Active Chiral Plasmonics.

Active control over the handedness of a chiral metamaterial has the potential to serve as key element for highly integrated polarization engineering approaches, polarization sensitive imaging devices, and stereo display technologies. However, this is hard to achieve as it seemingly involves the reconfiguration of the metamolecule from a left-handed into a right-handed enantiomer and vice versa. This type of mechanical actuation is intricate and usually neither monolithically realizable nor viable for high-speed applications. Here, enabled by the phase change material Ge3Sb2Te6 (GST-326), we demonstrate a tunable and switchable mid-infrared plasmonic chiral metamaterial in a proof-of-concept experiment. A large tunability range of the circular dichroism response from λ = 4.15 to 4.90 μm is achieved, and we experimentally demonstrate that the combination of a passive bias-type chiral layer with the active chiral metamaterial allows for switchable chirality, that is, the reversal of the circular dichroism sign, in a fully planar, layered design without the need for geometrical reconfiguration. Because phase change materials can be electrically and optically switched, our designs may open up a path for highly integrated mid-IR polarization engineering devices that can be modulated on ultrafast time scales.

[1]  R. Rapaport,et al.  Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects. , 2014, ACS nano.

[2]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[3]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[4]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[5]  N. Kanda,et al.  All-photoinduced terahertz optical activity. , 2014, Optics letters.

[6]  M. Kafesaki,et al.  Optically controllable THz chiral metamaterials. , 2014, Optics express.

[7]  T. Cui,et al.  Optically controlled background-free terahertz switching in chiral metamaterial. , 2014, Optics letters.

[8]  Nikolay I. Zheludev,et al.  1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage , 2014 .

[9]  M. Cryan,et al.  Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity , 2014, Scientific Reports.

[10]  Jingsong Wei,et al.  Chalcogenide phase-change thin films used as grayscale photolithography materials. , 2014, Optics express.

[11]  Harald Giessen,et al.  Yttrium hydride nanoantennas for active plasmonics , 2014, Optics & Photonics - NanoScience + Engineering.

[12]  Lei Zhang,et al.  Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies , 2014, Scientific Reports.

[13]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[14]  Jing Kong,et al.  Wide wavelength tuning of optical antennas on graphene with nanosecond response time. , 2014, Nano letters.

[15]  Harald Giessen,et al.  Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. , 2013, Nano letters.

[16]  Lei Zhang,et al.  Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. , 2013, Optics express.

[17]  Harald Giessen,et al.  Large-area 3D chiral plasmonic structures. , 2013, ACS nano.

[18]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[19]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[20]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[21]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[22]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[23]  B. Metzger,et al.  Plasmonic diastereomers: adding up chiral centers. , 2013, Nano letters.

[24]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[25]  Teri W. Odom,et al.  Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions. , 2012, Nano letters.

[26]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[27]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[28]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[29]  Daniel F. Santavicca,et al.  Efficient measurement of broadband terahertz optical activity , 2012 .

[30]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[31]  M. Hentschel,et al.  Three-dimensional chiral plasmonic oligomers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[32]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[33]  Andreas Tünnermann,et al.  Chiral metamaterial composed of three-dimensional plasmonic nanostructures. , 2011, Nano letters.

[34]  Luis M Liz-Marzán,et al.  Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. , 2011, Angewandte Chemie.

[35]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[36]  L. Liz‐Marzán,et al.  Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. , 2011, The journal of physical chemistry letters.

[37]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[38]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[39]  Rongkuo Zhao,et al.  Chiral metamaterials: retrieval of the effective parameters with and without substrate. , 2010, Optics express.

[40]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[41]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[42]  N. Kanda,et al.  Light-induced terahertz optical activity. , 2009, Optics letters.

[43]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[44]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[45]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[46]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[47]  Harald Giessen,et al.  Matched coordinates and adaptive spatial resolution in the Fourier modal method. , 2009, Optics express.

[48]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[49]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[50]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[51]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[52]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[53]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[54]  Nikolay I. Zheludev,et al.  Giant optical gyrotropy due to electromagnetic coupling , 2007 .

[55]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[56]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[57]  M. W. Klein,et al.  Correlation effects in disordered metallic photonic crystal slabs. , 2007, Physical review letters.

[58]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[59]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[60]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[61]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[62]  Nikolay I. Zheludev,et al.  Layered chiral metallic microstructures with inductive coupling , 2001 .

[63]  E. Korte Discrimination of Enantiomers at Microgram Level Using Liquid Crystalline Solutions , 1978 .