The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting.

[1]  Christopher L. Warren,et al.  Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. , 2006, Molecular cell.

[2]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[3]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[4]  K. Struhl,et al.  Extensive functional overlap between sigma factors in Escherichia coli. , 2006, Nature structural & molecular biology.

[5]  Jolyon Holdstock,et al.  Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  E. Kanin,et al.  Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo. , 2005, Molecular cell.

[7]  S. Darst,et al.  Sigma and RNA polymerase: an on-again, off-again relationship? , 2005, Molecular cell.

[8]  T. Laurence,et al.  Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis. , 2005, Molecular cell.

[9]  Bernhard Ø. Palsson,et al.  Immobilization of Escherichia coli RNA Polymerase and Location of Binding Sites by Use of Chromatin Immunoprecipitation and Microarrays , 2005, Journal of bacteriology.

[10]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[11]  Clifford A. Meyer,et al.  Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1 , 2005, Cell.

[12]  Philip Lijnzaad,et al.  Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. , 2005, Molecular cell.

[13]  R. Ebright,et al.  The interaction between σ70 and the β-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation , 2005 .

[14]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[15]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[16]  K. Struhl,et al.  Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo , 2004, Current protocols in molecular biology.

[17]  R. Ebright,et al.  The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Manju Bansal,et al.  A novel method for prokaryotic promoter prediction based on DNA stability , 2005, BMC Bioinformatics.

[19]  K. Struhl,et al.  The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes , 2004, Nature.

[20]  K. Struhl,et al.  Association of RNA polymerase with transcribed regions in Escherichia coli. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[22]  Jayanta Mukhopadhyay,et al.  The σ70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter , 2004, Nature Structural &Molecular Biology.

[23]  J. Gralla,et al.  Osmo-regulation of bacterial transcription via poised RNA polymerase. , 2004, Molecular cell.

[24]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[25]  Siddhartha Roy,et al.  Asynchronous basepair openings in transcription initiation: CRP enhances the rate‐limiting step , 2004, The EMBO journal.

[26]  N. Zenkin,et al.  The sigma 70 subunit of RNA polymerase induces lacUV5 promoter-proximal pausing of transcription. , 2004, Nature structural & molecular biology.

[27]  Jayanta Mukhopadhyay,et al.  The sigma 70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter. , 2004, Nature structural & molecular biology.

[28]  R. Landick,et al.  Tethering σ70 to RNA polymerase reveals high in vivo activity of σ factors and σ70-dependent pausing at promoter-distal locations , 2003 .

[29]  J. Vogel,et al.  RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. , 2003, Nucleic acids research.

[30]  Jeremy D. Glasner,et al.  Genome-Scale Analysis of the Uses of the Escherichia coli Genome: Model-Driven Analysis of Heterogeneous Data Sets , 2003, Journal of bacteriology.

[31]  Julio Collado-Vides,et al.  Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. , 2003, Journal of molecular biology.

[32]  Siddhartha Roy,et al.  Kinetics of Transcription Initiation at lacP1 , 2003, Journal of Biological Chemistry.

[33]  Yu Qiu,et al.  Predicting bacterial transcription units using sequence and expression data , 2003, ISMB.

[34]  M. Chamberlin,et al.  In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 3. Influences of individual DNA elements within the promoter recognition region on abortive initiation and promoter escape. , 2003, Biochemistry.

[35]  M. Chamberlin,et al.  In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes. , 2003, Biochemistry.

[36]  P. Sharp,et al.  RNA Polymerase II Accumulation in the Promoter-Proximal Region of the Dihydrofolate Reductase and γ-Actin Genes , 2003, Molecular and Cellular Biology.

[37]  M. Chamberlin,et al.  In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters. , 2003, Biochemistry.

[38]  G. Church,et al.  Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. , 2003, Genome research.

[39]  Chonghui Cheng,et al.  RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes. , 2003, Molecular and cellular biology.

[40]  R. Landick,et al.  Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations. , 2003, Genes & development.

[41]  L. Hsu,et al.  Promoter clearance and escape in prokaryotes. , 2002, Biochimica et biophysica acta.

[42]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[43]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[44]  R. Sen,et al.  Generality of the Branched Pathway in Transcription Initiation byEscherichia coli RNA Polymerase* , 2002, The Journal of Biological Chemistry.

[45]  R. Wagner,et al.  Structural Basis for H-NS-mediated Trapping of RNA Polymerase in the Open Initiation Complex at the rrnB P1* , 2002, The Journal of Biological Chemistry.

[46]  I-Min A. Dubchak,et al.  A computational approach to identify genes for functional RNAs in genomic sequences. , 2001, Nucleic acids research.

[47]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[48]  E. Nudler,et al.  Isolation and Characterization of σ70-Retaining Transcription Elongation Complexes from Escherichia coli , 2001, Cell.

[49]  R. Ebright,et al.  Translocation of σ70 with RNA Polymerase during Transcription Fluorescence Resonance Energy Transfer Assay for Movement Relative to DNA , 2001, Cell.

[50]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[51]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[52]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[53]  A. Hochschild,et al.  Mechanism for a transcriptional activator that works at the isomerization step. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  David J. Studholme,et al.  The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor , 2000, Journal of bacteriology.

[55]  Michael R. Green,et al.  Enhancement of TBP binding by activators and general transcription factors , 1999, Nature.

[56]  K. Struhl,et al.  Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme , 1999, Nature.

[57]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[58]  F. Rojo,et al.  Transcription activation or repression by phage psi 29 protein p4 depends on the strength of the RNA polymerase-promoter interactions. , 1997, Molecular cell.

[59]  K. Murakami,et al.  Repression and activation of promoter-bound RNA polymerase activity by Gal repressor. , 1997, Journal of molecular biology.

[60]  J. Geiselmann,et al.  Structural kinetics of transcription activation at the malT promoter of Escherichia coli by UV laser footprinting. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[62]  J. Keith Joung,et al.  Activation of prokaryotic transcription through arbitrary protein–protein contacts , 1997, Nature.

[63]  N. Thompson,et al.  Identification of the epitope for a highly cross-reactive monoclonal antibody on the major sigma factor of bacterial RNA polymerase , 1997, Journal of bacteriology.

[64]  M. Groudine,et al.  Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. , 1995, Genes & development.

[65]  A. Rougvie,et al.  The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged , 1988, Cell.

[66]  N. Shimamoto,et al.  Release of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase depends mainly on time elapsed after the start of initiation, not on length of product RNA. , 1986, The Journal of biological chemistry.

[67]  W. McClure,et al.  Mechanism and control of transcription initiation in prokaryotes. , 1985, Annual review of biochemistry.