Proximal Analysis and the Minimal Time Function of a Class of Semilinear Control Systems

The minimal time function of a class of semilinear control systems is considered in Banach spaces, with the target set being a closed ball. It is shown that the minimal time functions of the Yosida approximation equations converge to the minimal time function of the semilinear control system. Complete characterization is established for the subdifferential of the minimal time function satisfying the Hamilton–Jacobi–Bellman equation. These results extend the theory of finite dimensional linear control systems to infinite dimensional semilinear control systems.

[1]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[2]  Martino Bardi,et al.  A boundary value problem for the minimum-time function , 1989 .

[3]  P. Wolenski,et al.  Proximal Analysis and the Minimal Time Function , 1998 .

[4]  P. Wolenski,et al.  Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces , 2004 .

[5]  Boris S. Mordukhovich,et al.  Limiting subgradients of minimal time functions in Banach spaces , 2010, J. Glob. Optim..

[6]  Piermarco Cannarsa,et al.  Regularity Results for the Minimum Time Function of a Class of Semilinear Evolution Equations of Parabolic Type , 2000, SIAM J. Control. Optim..

[7]  Peter R. Wolenski,et al.  The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space , 2004, J. Glob. Optim..

[8]  Yi Jiang,et al.  Subdifferential properties for a class of minimal time functions with moving target sets in normed spaces , 2012 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Ovidiu Cârja,et al.  On the minimum time function and the minimum energy problem; a nonlinear case , 2006, Syst. Control. Lett..

[11]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[12]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[13]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[14]  Yi Jiang,et al.  Subdifferential properties of the minimal time function of linear control systems , 2011, J. Glob. Optim..

[15]  Piermarco Cannarsa,et al.  On the Bellman Equation for the Minimum Time Problem in Infinite Dimensions , 2004, SIAM J. Control. Optim..

[16]  Kung Fu Ng,et al.  Subdifferentials of a minimum time function in Banach spaces , 2006 .

[17]  Nguyen Mau Nam,et al.  Subgradients of Minimal Time Functions Under Minimal Requirements , 2010, 1009.1585.

[18]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[19]  Yiran He,et al.  Subdifferentials of a minimal time function in normed spaces , 2009 .

[20]  Pierpaolo Soravia,et al.  Discontinuous viscosity solutions to dirichlet problems for hamilton-jacob1 equations with , 1993 .