The Fashoda Meet Theorem for Rectangles

The articles [1], [6], [15], [17], [5], [2], [3], [16], [7], [14], [13], [10], [11], [8], [4], [9], and [12] provide the notation and terminology for this paper. One can prove the following propositions: (1) For all real numbers a, b, d and for every point p of E2 T such that a < b and p2 = d and a ≤ p1 and p1 ≤ b holds p ∈ L([a, d], [b, d]). (2) Let n be a natural number, P be a subset of E T, and p1, p2 be points of E T. Suppose P is an arc from p1 to p2. Then there exists a map f from I into E T such that f is continuous and one-to-one and rng f = P and f(0) = p1 and f(1) = p2. (3) Let p1, p2 be points of E 2 T and b, c, d be real numbers. If (p1)1 < b and (p1)1 = (p2)1 and c ≤ (p1)2 and (p1)2 < (p2)2 and (p2)2 ≤ d, then p1 ≤Rectangle((p1)1,b,c,d) p2. (4) Let p1, p2 be points of E 2 T and b, c be real numbers. Suppose (p1)1 < b and c < (p2)2 and c ≤ (p1)2 and (p1)2 ≤ (p2)2 and (p1)1 ≤ (p2)1 and (p2)1 ≤ b. Then p1 ≤Rectangle((p1)1,b,c,(p2)2) p2. (5) Let p1, p2 be points of E 2 T and c, d be real numbers. Suppose (p1)1 < (p2)1 and c < d and c ≤ (p1)2 and (p1)2 ≤ d and c ≤ (p2)2 and (p2)2 ≤ d. Then p1 ≤Rectangle((p1)1,(p2)1,c,d) p2.

[1]  Grzegorz Bancerek,et al.  Sequences of Ordinal Numbers , 1990 .

[2]  Basic Facts about Inaccessible and Measurable Cardinals , 2004 .

[3]  Yatsuka Nakamura A Decomposition of Simple Closed Curves and the Order of Their Points , 2004 .

[4]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[5]  Yasunari Shidama,et al.  Some Properties of Circles on the Plane 1 , 2005 .

[6]  Adam Grabowski,et al.  Algebraic Properties of Homotopies , 2004 .

[7]  Adam Grabowski,et al.  Introduction to the Homotopy Theory , 1997 .

[8]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[9]  Jarosław Kotowicz Real Sequences and Basic Operations on Them , 2004 .

[10]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[11]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[12]  Zbigniew Karno,et al.  Separated and Weakly Separated Subspaces of Topological Spaces , 1991 .

[13]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[14]  Weighted and Labeled Graphs 1 , 2005 .

[15]  Konrad Raczkowski,et al.  Topological Properties of Subsets in Real Numbers 1 , 1990 .

[16]  Konrad Raczkowski,et al.  Equivalence Relations and Classes of Abstraction 1 , 1990 .

[17]  Gilbert Lee Trees and Graph Components 1 , 2005 .

[18]  Micha l Muzalewski Categories of Groups , 1991 .

[19]  Beata Padlewska,et al.  Families of Sets , 1990 .

[20]  Andrzej Trybulec,et al.  Tuples, Projections and Cartesian Products , 1990 .

[21]  Yatsuka Nakamura,et al.  Introduction to Go-Board - Part II , 1992 .

[22]  Piotr Rudnicki,et al.  Abian's Fixed Point Theorem , 2007 .

[23]  Yatsuka Nakamura On Outside Fashoda Meet Theorem , 2007 .

[24]  Krzysztof Hryniewiecki,et al.  Basic Properties of Real Numbers , 2004 .

[25]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[26]  Yatsuka Nakamura,et al.  Components and Unions of Components , 1996 .

[27]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[28]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[29]  Leszek Borys,et al.  Paracompact and Metrizable Spaces , 1991 .

[30]  Yoshinori Isomichi New concepts in the theory of topological space---supercondensed set, subcondensed set, and condensed set. , 1971 .

[31]  Kazimierz Kuratowski,et al.  LOCALLY CONNECTED SPACES , 1972 .

[32]  Agata Darmochwa,et al.  Topological Spaces and Continuous Functions , 1990 .

[33]  Grzegorz Bancerek,et al.  Zermelo Theorem and Axiom of Choice , 1990 .

[34]  Dariusz Surowik,et al.  Cyclic Groups and Some of Their Properties - Part I , 1991 .

[35]  Wojciech A. Trybulec,et al.  Homomorphisms and isomorphisms of groups , 1991 .

[36]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Yatsuka Nakamura,et al.  Vertex Sequences Induced by Chains 1 , 1996 .

[38]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[39]  Agata Darmochwał Families of Subsets , Subspaces and Mappings in Topological Spaces , 1989 .

[40]  Yatsuka Nakamura,et al.  Limit of Sequence of Subsets , 2005 .

[41]  Agata Darmochwa Euclidean Space , 2018, How to Pass the FRACP Written Examination.

[42]  Zbigniew Karno,et al.  On Discrete and Almost Discrete Topological Spaces , 1992 .

[43]  Yatsuka Nakamura,et al.  Decomposing a Go-Board into Cells , 1996 .

[44]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[45]  Yasunari Shidama,et al.  The Fundamental Group , 2004 .

[46]  Some Lemmas for the Jordan Curve Theorem 1 , 2004 .

[47]  Yatsuka Nakamura,et al.  Extremal Properties of Vertices on Special Polygons, Part I , 1996 .

[48]  Andrzej Trybulec,et al.  A Borsuk Theorem on Homotopy Types , 1991 .

[49]  Sam Alfred Pearsall The Cantor set , 1999 .

[50]  Yatsuka Nakamura,et al.  Metric Spaces as Topological Spaces - Fundamental Concepts , 1991 .

[51]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[52]  Yatsuka Nakamura,et al.  The Topological Space E 2 T . Arcs , Line Segments and Special Polygonal Arcs , 2004 .

[53]  Yatsuka Nakamura,et al.  General Fashoda Meet Theorem for Unit Circle and Square , 2003 .

[54]  Yatsuka Nakamura,et al.  Bounded Domains and Unbounded Domains , 1999 .

[55]  Czeslaw Bylinski,et al.  Bounding Boxes for Compact Sets in E 2 , 1997 .

[56]  Andrzej Trybulec,et al.  On the Sets Inhabited by Numbers 1 , 2003 .

[57]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[58]  Yatsuka Nakamura,et al.  Reconstructions of Special Sequences1 , 2004 .

[59]  A. Zalewska,et al.  Properties of Binary Relations , 1990 .

[60]  Artur Korniłowicz The Ordering of Points on a Curve . Part IV 1 , 2004 .