Riboswitches: the oldest mechanism for the regulation of gene expression?

[1]  C. Yanofsky,et al.  Regulation by Termination-Antitermination: a Genomic Approach , 2002 .

[2]  R. Kadner,et al.  Adenosylcobalamin inhibits ribosome binding to btuB RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[4]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[5]  S. Aymerich,et al.  Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Oltean,et al.  Nutritional Modulation of Gene Expression and Homocysteine Utilization by Vitamin B12* , 2003, Journal of Biological Chemistry.

[7]  M. Gelfand,et al.  A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. , 1999, Trends in genetics : TIG.

[8]  S. Kochhar,et al.  Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis. , 1996, Microbiology.

[9]  A. van Loon,et al.  Regulation of Riboflavin Biosynthesis inBacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded byribC , 1998, Journal of bacteriology.

[10]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[11]  J. Miranda-Ríos,et al.  A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Yanofsky,et al.  Transcription attenuation. , 1988, The Journal of biological chemistry.

[14]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[15]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[16]  C. Turnbough,et al.  Role of the ribosome in suppressing transcriptional termination at the pyrBI attenuator of Escherichia coli K-12. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Yanofsky,et al.  Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  D Kiga,et al.  An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition. , 1998, Nucleic acids research.

[19]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[20]  D. Leak,et al.  The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. , 1999, Microbiology.

[21]  M. Famulok,et al.  Oligonucleotide aptamers that recognize small molecules. , 1999, Current opinion in structural biology.

[22]  Charles Wilson,et al.  The structural basis for molecular recognition by the vitamin B 12 RNA aptamer , 2000, Nature Structural Biology.

[23]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[24]  P. Babitzke Regulation of tryptophan biosynthesis: Trp‐ing the TRAP or how Bacillus subtilis reinvented the wheel , 1997, Molecular microbiology.

[25]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[26]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[27]  Dmitry A Rodionov,et al.  Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. , 2002, Genome research.

[28]  M. Gelfand,et al.  Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. , 2002, Nucleic acids research.

[29]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Patel,et al.  Molecular recognition in the FMN-RNA aptamer complex. , 1996, Journal of molecular biology.

[31]  R. Nielsen A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes , 2022 .

[32]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[34]  P. Nygaard,et al.  Definition of a Second Bacillus subtilis pur Regulon Comprising the pur and xpt-pbuX Operons plus pbuG, nupG (yxjA), and pbuE (ydhL) , 2003, Journal of bacteriology.

[35]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[36]  D. Andersson,et al.  An adenosyl–cobalamin (coenzyme‐B12)‐repressed translational enhancer in the cob mRNA of Salmonella typhimurium , 2001, Molecular microbiology.

[37]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[38]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[39]  L. Christiansen,et al.  Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism , 1997, Journal of bacteriology.

[40]  T. Henkin,et al.  Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements. , 2002, Nucleic acids research.

[41]  A. Danchin,et al.  The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. , 2002, Microbiology.

[42]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Andrey A Mironov,et al.  Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. , 2003, RNA.

[44]  J. M. Buchanan CHAPTER 35 – Biosynthesis of Purine Nucleotides* , 1960 .

[45]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[46]  M S Gelfand,et al.  Recognition of regulatory sites by genomic comparison. , 1999, Research in microbiology.

[47]  Hanne Jarmer,et al.  Definition of the Bacillus subtilisPurR Operator Using Genetic and Bioinformatic Tools and Expansion of the PurR Regulon with glyA, guaC,pbuG, xpt-pbuX, yqhZ-folD, and pbuO , 2001, Journal of bacteriology.

[48]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[49]  A. Krol,et al.  Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. , 2002, Biochimie.

[50]  Gary D. Stormo,et al.  Do mRNAs act as direct sensors of small molecules to control their expression? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Breaker,et al.  Genetic Control by Metabolite‐Binding Riboswitches , 2003, Chembiochem : a European journal of chemical biology.