Building Spatial Choice Models from Aggregate Data

Choice model construction is usually based on information about a number of separate choice situations, for which all relevant quantities are known. This paper concerns the case where only higher level, aggregate information is available about the choice results and the prevailing conditions. We demonstrate the applicability of a generic inverse parameter estimation method in estimating a model for grocery store choice. We also propose some enhancements to standard spatial choice models and demonstrate their applicability.

[1]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[2]  W. G. Hansen How Accessibility Shapes Land Use , 1959 .

[3]  P. R. Nelson Continuous Univariate Distributions Volume 2 , 1996 .

[4]  R. Berk,et al.  Continuous Univariate Distributions, Volume 2 , 1995 .

[5]  H. Timmermans,et al.  Choice model specification, substitution and spatial structure effects: A simulation experiment , 1987 .

[6]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[7]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[8]  A. Fotheringham,et al.  Spatial Competition and Agglomeration in Urban Modelling , 1985 .

[9]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[10]  安川 文明,et al.  予防歯科プログラムの選考に関する Discrete Choice Analysis , 2002 .

[11]  Michel Bierlaire,et al.  On The Overspecification of Multinomial and Nested Logit Models Due to Alternative Specific Constants , 1997, Transp. Sci..

[12]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[13]  A S Fotheringham,et al.  A New Set of Spatial-Interaction Models: The Theory of Competing Destinations † , 1983 .

[14]  Morton E. O'Kelly,et al.  Spatial Interaction Models:Formulations and Applications , 1988 .

[15]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[16]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .