Behaviour of a quasi-brittle material at high strain rate. Experiment and modelling

Strain-rate effects on the behaviour and on failure of concrete under quasi-static and dynamic loading (with uniaxial strain-rates up to 1000 s−1) are investigated from both experimental testing and modelling point of views. The main damaging process taken into account is the brittle tensile response induced by Poissons' effects under compression loading. The proposed meso-mechanical model is based on a description of mechanisms observed at a microscopic level after failure has started. The strain-rate sensitivity then appears as a consequence of the motions of such mechanisms, with the introduction of the time derivative of the strain-rate (ϵ) in the formulation. Dynamic loadings under compression are performed with a Split Hopkinson pressure bar (SHBP) apparatus. To investigate the response of concrete under multiaxial loading, a specific device presented in the paper is specially built to produce dynamic compression under various controlled lateral confinement pressures, allowing for an independent evaluation of radial inertia and lateral pressure effects. It is found that a small number of parameters, mostly deduced from a classical pure compression or traction test, allow for correct modelling of the response under multiaxial loading for a wide range of speeds of loading.

[1]  Gérard Gary,et al.  Dynamic buckling of an elastoplastic column , 1983 .

[2]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[3]  Pierre Rossi,et al.  Dynamic behaviour of concretes: from the material to the structure , 1994 .

[4]  J. D. Campbell,et al.  Tensile Testing of Materials at Impact Rates of Strain , 1960 .

[5]  Hans W. Reinhardt,et al.  Joint investigation of concrete at high rates of loading , 1990 .

[6]  Michael D. Kotsovos,et al.  Effect of testing techniques on the post-ultimate behaviour of concrete in compression , 1983 .

[7]  P. Bailly Une modélisation d'un matériau fragile avec prise en compte d'effets dynamiques , 1994 .

[8]  J. Mier Multiaxial strain-softening of concrete , 1986 .

[9]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[10]  O. C. Zienkiewicz,et al.  Constitutive model for concrete under dynamic loading , 1983 .

[11]  R. J. Christensen,et al.  Split-hopkinson-bar tests on rock under confining pressure , 1972 .

[12]  Jean-François Semblat SOLS SOUS SOLLICITATIONS DYNAMIQUES ET TRANSITOIRES, REPONSE DYNAMIQUE AUX BARRES DE HOPKINSON, PROPAGATION D'ONDES EN MILIEU CENTRIFUGE , 1995 .

[13]  Jean-Jacques Marigo,et al.  Un modèle de matériau microfissuré pour les bétons et les roches , 1986 .

[14]  S. H. Perry,et al.  Compressive behaviour of concrete at high strain rates , 1991 .

[15]  J. B. Cheatham,et al.  The Effect of Pressure, Temperature, and Loading Rate on the Mechanical Properties of Rocks , 1968 .

[16]  J. R. Klepaczko,et al.  A unified analytic and numerical approach to specimen behaviour in the Split-Hopkinson pressure bar , 1986 .

[17]  R. Davies A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  Hubert Maigre,et al.  Inverse Problems in Engineering Mechanics , 1994 .

[19]  M. E. Kipp,et al.  Oil shale fracture and fragmentation at higher rates of loading , 1979 .

[20]  Han Zhao,et al.  On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains , 1996 .

[21]  M. Terrien EMISSION ACOUSTIQUE ET "COMPORTEMENT MECANIQUE POST-CRITIQUE" D'UN BETON SOLLICITE EN TRACTION , 1980 .

[22]  J. R. Klepaczko On the role of microcracking inertia in rate sensitivity of coal at high strain rates , 1988 .

[23]  M. J. Forrestal,et al.  An experimental method to estimate the dynamic fracture strength of oil shale in the 103 to 104 s−1 strain rate regime , 1978 .

[24]  P. Rossi,et al.  Influence of cracking in the presence of free water on the mechanical behaviour of concrete , 1991 .

[25]  B. Hopkinson A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets , 1914 .

[26]  F Ulm UN MODELE D'ENDOMMAGEMENT PLASTIQUE: APPLICATION AUX BETONS DE STRUCTURES , 1996 .

[27]  S. Pietruszczak,et al.  An elastoplastic constitutive model for concrete , 1988 .

[28]  W. Goldsmith,et al.  Dynamic behavior of concrete , 1966 .

[29]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[30]  Surendra P. Shah,et al.  Micromechanics of failure of quasi-brittle materials , 1990 .

[31]  H. D. Bui,et al.  Mécanique de la rupture fragile , 1978 .

[32]  Andrew Nagy,et al.  The dynamic strength and fracture properties of dresser basalt , 1974 .

[33]  J. R. Klepaczko,et al.  Behavior of rock-like materials at high strain rates in compression , 1990 .

[34]  U. S. Lindholm Some experiments with the split hopkinson pressure bar , 1964 .

[35]  R. Hill,et al.  Book Review: Mechanical properties of non-metallic brittle materials. Edited by W.H. WALTON. Butterworths, London; Inter-Science, New York, 1958. 492 pp., 90s , 1960 .

[36]  Wai-Fah Chen,et al.  CONSTITUTIVE RELATIONS FOR CONCRETE , 1975 .

[37]  Surendra P. Shah,et al.  Rate-sensitive damage theory for brittle solids , 1984 .

[38]  J. Duffy,et al.  On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum , 1971 .

[39]  L. E. Malvern,et al.  Dispersion Investigation in the Split Hopkinson Pressure Bar , 1990 .

[40]  G. Gary,et al.  Behavior of rock salt in uniaxial compression at medium and high strain rates , 1991 .

[41]  L. E. Malvern,et al.  Rate Effects in Uniaxial Dynamic Compression of Concrete , 1992 .

[42]  L. Cedolin,et al.  Triaxial Stress-Strain Relationship for Concrete , 1977 .

[43]  L. E. Malvern,et al.  Dynamic Testing of Laterally Confined Concrete , 1990 .

[44]  R. de Borst,et al.  Wave propagation and localization in a rate-dependent cracked medium-model formulation and one-dimensional examples , 1992 .

[45]  W. Chen,et al.  A nonuniform hardening plasticity model for concrete materials , 1985 .

[46]  H. Reinhardt,et al.  The split Hopkinson bar, a versatile tool for the impact testing of concrete , 1986 .

[47]  P. Rossi,et al.  INFLUENCE OF FREE WATER IN CONCRETE ON THE CRACKING PROCESS , 1990 .

[48]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[49]  Sia Nemat-Nasser,et al.  Dynamic Damage Evolution of Solids in Compression: Microcracking, Plastic Flow, and Brittle-Ductile Transition , 1994 .

[50]  N. Kusano,et al.  Impulsive local damage analyses of concrete structure by the distinct element method , 1992 .

[51]  Gérard Gary,et al.  Measurements of the dynamic behaviour of concrete under impact loading. , 1996 .

[52]  A. V. Attia THE EFFECT OF FRICTION ON SIMULATED DYNAMIC FRACTURING OF ROCKS , 1991 .

[53]  Edward C. Ting,et al.  Constitutive Models for Concrete Structures , 1980 .

[54]  Zdenek P. Bazant,et al.  ENDOCHRONIC THEORY OF INELASTICITY AND FAILURE OF CONCRETE , 1976 .