Electrical structure of the central Cascadia subduction zone: The EMSLAB Lincoln Line revisited

[1]  Adam Schultz,et al.  Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data , 2014 .

[2]  S. Constable,et al.  Melt-rich channel observed at the lithosphere–asthenosphere boundary , 2013, Nature.

[3]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[4]  Basic Principles of Electromagnetic and Seismological Investigation of Shallow Subduction Zone Structure , 2013 .

[5]  R. Mcgary The CAFE experiment : a joint seismic and MT investigation of the Cascadia subduction system , 2013 .

[6]  M. Zhdanov,et al.  Geoelectrical Structure of the Lithosphere and Asthenosphere beneath the Northwestern United States , 2012 .

[7]  P. Wannamaker,et al.  The CAFÉ seismic and magnetotelluric experiments: An investigation of fluid processes in the Cascadia subduction system using a sequential inversion of passive seismic and magnetotelluric data , 2012 .

[8]  S. Constable,et al.  Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench , 2012 .

[9]  F. Waldhauser,et al.  Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity , 2012 .

[10]  Alan G. Jones,et al.  The magnetotelluric method : theory and practice , 2012 .

[11]  T. Worzewski,et al.  Approximations for the 2-D coast effect on marine magnetotelluric data , 2012 .

[12]  Y. Asmerom,et al.  U-series isotope systematics of mafic magmas from central Oregon: Implications for fluid involvement and melting processes in the Cascade arc , 2011 .

[13]  B. Reynard,et al.  Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones , 2011 .

[14]  H. Keppler,et al.  Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle , 2011 .

[15]  Kerry Key,et al.  Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan , 2011 .

[16]  H. Kopp,et al.  Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone , 2011 .

[17]  A. Pommier,et al.  "SIGMELTS": A web portal for electrical conductivity calculations in geosciences , 2010, Comput. Geosci..

[18]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[19]  Hisashi Utada,et al.  Upper mantle electrical resistivity structure beneath the central Mariana subduction system , 2010 .

[20]  G. Abers,et al.  Imaging the source region of Cascadia tremor and intermediate-depth earthquakes , 2009 .

[21]  Kerry Key,et al.  Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data , 2009 .

[22]  F. Gaillard,et al.  Carbonatite Melts and Electrical Conductivity in the Asthenosphere , 2008, Science.

[23]  G. Egbert,et al.  Regional conductivity structure of Cascadia: Preliminary results from 3D inversion of USArray transportable array magnetotelluric data , 2008 .

[24]  H. Brasse,et al.  Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin , 2008 .

[25]  G. Abers,et al.  Seismic imaging of subduction zone metamorphism , 2008 .

[26]  M. C. Rowe,et al.  Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts , 2008 .

[27]  H. Kawakatsu,et al.  Seismic Evidence for Deep-Water Transportation in the Mantle , 2007, Science.

[28]  W. Hildreth Quaternary magmatism in the Cascades : geologic perspectives , 2007 .

[29]  Richard M. Allen,et al.  Segmentation in episodic tremor and slip all along Cascadia , 2006 .

[30]  A. Chave,et al.  Mantle dynamics beneath the East Pacific Rise at 17°S : insights from the Mantle Electromagnetic and Tomography (MELT) experiment , 2006 .

[31]  M. Unsworth,et al.  Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: Implications for the distribution of fluids , 2006 .

[32]  D. Forsyth,et al.  Geophysical evidence from the MELT area for compositional controls on oceanic plates , 2005, Nature.

[33]  Juanjo Ledo,et al.  2-D Versus 3-D Magnetotelluric Data Interpretation , 2005 .

[34]  J. Cassidy,et al.  New constraints on subduction zone structure in northern Cascadia , 2005 .

[35]  W. Leeman,et al.  Petrologic constraints on the thermal structure of the Cascades arc , 2005 .

[36]  H. Bibby,et al.  The magnetotelluric phase tensor , 2004 .

[37]  Alan D. Chave,et al.  Bounded influence magnetotelluric response function estimation , 2004 .

[38]  P. A. McCrory,et al.  Depth to the Juan De Fuca slab beneath the Cascadia subduction margin - a 3-D model for sorting earthquakes , 2004 .

[39]  Simon M. Peacock,et al.  Serpentinization of the forearc mantle , 2003 .

[40]  Richard G. Derwent,et al.  Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere , 2003 .

[41]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[42]  Simon M. Peacock,et al.  Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? , 2003 .

[43]  Jie Guo,et al.  Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure , 2002 .

[44]  S. Peacock,et al.  High‐resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle , 2002 .

[45]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[46]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set , 2001 .

[47]  Magali I. Billen,et al.  A low viscosity wedge in subduction zones , 2001 .

[48]  Herb Dragert,et al.  GPS‐determination of along‐strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation , 2001 .

[49]  Alan G. Jones,et al.  Multisite, multifrequency tensor decomposition of magnetotelluric data , 2001 .

[50]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[51]  D. Harry,et al.  On the relationship between subducted slab age and arc basalt petrogenesis, Cascadia subduction system, North America , 1999 .

[52]  P. Wannamaker 22. Affordable Magnetotellurics: Interpretation in Natural Environments , 1999 .

[53]  S. Gulick,et al.  Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction , 1998 .

[54]  N. Kukowski,et al.  New seismic images of the Cascadia subduction zone from cruise SO108 — ORWELL , 1998 .

[55]  Kelin Wang,et al.  Three‐dimensional dislocation model for great earthquakes of the Cascadia Subduction Zone , 1997 .

[56]  Gary D. Egbert,et al.  Robust multiple‐station magnetotelluric data processing , 1997 .

[57]  V. Haak,et al.  Electromagnetic study of the active continental margin in northern Chile , 1997 .

[58]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[59]  S. Eggins,et al.  Subduction zone magmatism , 1995 .

[60]  Y. Furukawa Depth of the decoupling plate interface and thermal structure under arcs , 1993 .

[61]  B. Nesbitt,et al.  Electrical resistivities of crustal fluids , 1993 .

[62]  M. E. Mackay,et al.  Landward vergence and oblique structural trends in the Oregon margin accretionary prism: Implications and effect on fluid flow , 1992 .

[63]  Alan G. Jones,et al.  Electrical conductivity of the continental lower crust , 1992 .

[64]  G. W. Hohmann,et al.  Electromagnetic Induction Studies , 1991 .

[65]  R. Kurtz,et al.  The electrical conductivity distribution beneath Vancouver Island: A region of active plate subduction , 1990 .

[66]  R. Hyndman,et al.  Accretion and recent deformation of sediments along the northern Cascadia subduction zone , 1989 .

[67]  Alan G. Jones,et al.  Resistivity cross section through the Juan de Fuca Subduction System and its tectonic implications , 1989 .

[68]  Mario Martínez,et al.  Two‐dimensional magnetotelluric inversion of the EMSLAB Lincoln Line , 1989 .

[69]  A. Chave,et al.  Introduction to the special section on the EMSLAB‐Juan de Fuca Experiment , 1989 .

[70]  D. V. Woods,et al.  Conductive structures and tectonics beneath the EMSLAB land array , 1989 .

[71]  J. Oliver,et al.  Cenozoic active margin and shallow Cascades structure: COCORP results from western Oregon , 1989 .

[72]  Verification of five magnetotelluric systems in the mini-EMSLAB experiment , 1988 .

[73]  John R. Booker,et al.  Electromagnetic Induction Studies , 1987 .

[74]  R. Kurtz,et al.  A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate , 1986, Nature.

[75]  A. T. Anderson,et al.  Alteration of oceanic crust and geologic cycling of chlorine and water , 1983 .