Bottom Ash‐Based Geopolymer Materials: Mechanical and Environmental Properties

[1]  J. Deventer,et al.  The effects of inorganic salt contamination on the strength and durability of geopolymers , 2002 .

[2]  Pavel Rovnaník,et al.  Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer , 2010 .

[3]  P. Michaud,et al.  Silica fume as porogent agent in geo-materials at low temperature , 2010 .

[4]  Cruz Alonso,et al.  Microstructural Characterization of Leaching Effects in Cement Pastes Due to Neutralisation of their Alkaline Nature. Part I: Portland Cement Pastes , 2007 .

[5]  J. Temuujin,et al.  Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. , 2009, Journal of hazardous materials.

[6]  Jadambaa Temuujin,et al.  Preparation and characterisation of fly ash based geopolymer mortars , 2010 .

[7]  P. Chindaprasirt,et al.  Comparative study on the characteristics of fly ash and bottom ash geopolymers. , 2009, Waste management.

[8]  A Polettini,et al.  Chemical activation in view of MSWI bottom ash recycling in cement-based systems. , 2009, Journal of hazardous materials.

[9]  Mark E. Smith,et al.  A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers , 2007 .

[10]  D Amutha Rani,et al.  Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. , 2010, Journal of hazardous materials.

[11]  Alessandra Polettini,et al.  The effect of Na and Ca salts on MSWI bottom ash activation for reuse as a pozzolanic admixture , 2005 .

[12]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[13]  Warren A. Dick,et al.  Compressive strength and microstructural characteristics of class C fly ash geopolymer , 2010 .

[14]  Chai Jaturapitakkul,et al.  Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer , 2010 .

[15]  Roberta Onori,et al.  Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. , 2011, Waste management.

[16]  Sanjay Kumar,et al.  Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer , 2011 .

[17]  V. Sirivivatnanon,et al.  Workability and strength of coarse high calcium fly ash geopolymer , 2007 .

[18]  R. Cloots,et al.  (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement , 2006 .

[19]  J. Temuujin,et al.  Effect of fly ash preliminary calcination on the properties of geopolymer. , 2009, Journal of hazardous materials.

[20]  J. Phair,et al.  Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers , 2002 .

[21]  C. Cheeseman,et al.  Geopolymerisation of silt generated from construction and demolition waste washing plants. , 2009, Waste management.

[22]  María Teresa Blanco-Varela,et al.  Chemical stability of cementitious materials based on metakaolin , 1999 .

[23]  R. Cioffi,et al.  Coal fly ash as raw material for the manufacture of geopolymer-based products. , 2008, Waste management.

[24]  Paulo J.M. Monteiro,et al.  The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers , 2010 .

[25]  William D.A. Rickard,et al.  Thermal Character of Geopolymers Synthesized from Class F Fly Ash Containing High Concentrations of Iron and α-Quartz , 2010 .

[26]  M. Weil,et al.  The influence of calcium content on the structure and thermal performance of fly ash based geopolymers , 2007 .

[27]  Jay G. Sanjayan,et al.  Effect of elevated temperatures on geopolymer paste, mortar and concrete , 2010 .

[28]  J.S.J. van Deventer,et al.  THE EFFECT OF COMPOSITION AND TEMPERATURE ON THE PROPERTIES OF FLY ASH- AND KAOLINITE -BASED GEOPOLYMERS , 2002 .

[29]  D. Cocke,et al.  Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of portland cement and solidification/stabilization consequences , 1995 .

[30]  Dimitrios Panias,et al.  EFFECT OF SYNTHESIS PARAMETERS ON THE MECHANICAL PROPERTIES OF FLY ASH-BASED GEOPOLYMERS , 2007 .

[31]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[32]  A. Boccaccini,et al.  Ceramic processing of incinerator bottom ash. , 2003, Waste management.

[33]  John L. Provis,et al.  The mechanism of geopolymer gel formation investigated through seeded nucleation , 2008 .

[34]  J. Deventer,et al.  Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution , 2006 .

[35]  J. Deja,et al.  Spectroscopic studies of alkaline activated slag geopolymers , 2009 .

[36]  Vít Smilauer,et al.  Material and structural characterization of alkali activated low-calcium brown coal fly ash. , 2009, Journal of hazardous materials.

[37]  J. Zhai,et al.  Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. , 2010, Journal of hazardous materials.

[38]  Jay G. Sanjayan,et al.  Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures , 2010 .