TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

We present full 2π global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.

[1]  D. Wilner,et al.  EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS , 2010, 1011.3826.

[2]  A. Beresnyak,et al.  Spectral slope and Kolmogorov constant of MHD turbulence. , 2010, Physical review letters.

[3]  R. Kissmann,et al.  Vertical Structure and Turbulent Saturation Level in Fully Radiative Protoplanetary Disc Models , 2010, 1007.4747.

[4]  J. Cuzzi,et al.  Relative velocities of solids in a turbulent protoplanetary disc , 2010 .

[5]  C. Dullemond,et al.  Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks , 2010, 1006.0940.

[6]  S. Fromang,et al.  MHD simulations of the magnetorotational instability in a shearing box with zero net flux: the case Pm = 4 , 2010, 1004.2382.

[7]  P. Armitage,et al.  CONNECTIONS BETWEEN LOCAL AND GLOBAL TURBULENCE IN ACCRETION DISKS , 2010, 1002.3611.

[8]  T. Henning,et al.  Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations , 2010, 1002.2521.

[9]  E. Blackman Comparisons and Connections between Mean Field Dynamo Theory and Accretion Disc Theory , 2009, 0911.2315.

[10]  N. Turner,et al.  DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING , 2009, 0911.1533.

[11]  S. Inutsuka,et al.  PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION , 2009, 0911.0311.

[12]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.

[13]  Shigenobu Hirose,et al.  WHAT IS THE NUMERICALLY CONVERGED AMPLITUDE OF MAGNETOHYDRODYNAMICS TURBULENCE IN STRATIFIED SHEARING BOXES? , 2009, 0909.2003.

[14]  J. M. Stone,et al.  SUSTAINED MAGNETOROTATIONAL TURBULENCE IN LOCAL SIMULATIONS OF STRATIFIED DISKS WITH ZERO NET MAGNETIC FLUX , 2009, 0909.1570.

[15]  A. Mignone,et al.  High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability , 2009, 0906.5516.

[16]  J. Hawley,et al.  VISCOUS AND RESISTIVE EFFECTS ON THE MAGNETOROTATIONAL INSTABILITY WITH A NET TOROIDAL FIELD , 2009, 0906.5352.

[17]  R. Nelson,et al.  Global MHD simulations of stratified and turbulent protoplanetary discs. II. Dust settling , 2009, 0901.4434.

[18]  F. Ciesla Two-dimensional transport of solids in viscous protoplanetary disks , 2008, 0812.3916.

[19]  J. Papaloizou,et al.  The excitation of spiral density waves through turbulent fluctuations in accretion discs – II. Numerical simulations with MRI-driven turbulence , 2008, 0812.2471.

[20]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[21]  A. Johansen,et al.  Gravoturbulent planetesimal formation , 2008 .

[22]  G. Lesur,et al.  On self-sustained dynamo cycles in accretion discs , 2008, 0807.1703.

[23]  A. Ferrari,et al.  Aspect Ratio Dependence in Magnetorotational Instability Shearing Box Simulations , 2008, 0805.1172.

[24]  Karim Shariff,et al.  Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula , 2008, 0804.3526.

[25]  N. Turner,et al.  Dead Zone Accretion Flows in Protostellar Disks , 2008, 0804.2916.

[26]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[27]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[28]  A. Johansen,et al.  Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potentia , 2007, 0705.4090.

[29]  J. Papaloizou,et al.  MHD simulations of the magnetorotational instability in a shearing box with zero net flux II. The effect of transport coefficients , 2007, 0705.3622.

[30]  P. Longaretti,et al.  Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport , 2007, 0704.2943.

[31]  M. Wardle,et al.  Magnetic fields in protoplanetary disks , 2007, 0704.0970.

[32]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[33]  N. Turner,et al.  Turbulent Mixing and the Dead Zone in Protostellar Disks , 2006, astro-ph/0612552.

[34]  R. Teyssier,et al.  A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .

[35]  R. Nelson,et al.  Global MHD simulations of stratified and turbulent protoplanetary discs - I. Model properties , 2006, astro-ph/0606729.

[36]  S. Cabrit,et al.  Which jet launching mechanism(s) in T Tauri stars , 2006, astro-ph/0604053.

[37]  H. Yorke,et al.  Turbulent Mixing in the Outer Solar Nebula , 2005, astro-ph/0511325.

[38]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[39]  S. Inutsuka,et al.  Self-sustained Ionization and Vanishing Dead Zones in Protoplanetary Disks , 2005, astro-ph/0506131.

[40]  J. Stone,et al.  A New Godunov Scheme for MHD, with Application to the MRI in disks , 2005, astro-ph/0501547.

[41]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[42]  K. Subramanian,et al.  Astrophysical magnetic fields and nonlinear dynamo theory , 2004, astro-ph/0405052.

[43]  T. Henning,et al.  Reduction of chemical networks. II. Analysis of the fractional ionisation in protoplanetary discs , 2004, astro-ph/0403555.

[44]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks. VI. Mixing by large-scale radial flows , 2004 .

[45]  T. Henning,et al.  Transport processes and chemical evolution in steady accretion disk flows , 2004 .

[46]  J. Stone,et al.  Angular Momentum Transport by Magnetohydrodynamic Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability , 2003, astro-ph/0312480.

[47]  J. Stone,et al.  Local Magnetohydrodynamic Models of Layered Accretion Disks , 2002, astro-ph/0210541.

[48]  T. Takeuchi,et al.  Radial Flow of Dust Particles in Accretion Disks , 2002, astro-ph/0208552.

[49]  J. Stone,et al.  The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability. II. Saturation Level and Critical Magnetic Reynolds Number , 2002, astro-ph/0205383.

[50]  J. Stone,et al.  The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability. I. Local Axisymmetric Simulations , 2002, astro-ph/0201179.

[51]  T. Henning,et al.  Global Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks and the Surrounding Magnetosphere , 2001 .

[52]  D. G. Yakovlev,et al.  Nucleon superfluidity vs. observations of cooling neutron stars , 2001, astro-ph/0105047.

[53]  R. Arlt,et al.  Global accretion disk simulations of magneto-rotational instability , 2001, astro-ph/0101470.

[54]  R. Beck Galactic and Extragalactic Magnetic Fields , 2000, 0810.2923.

[55]  J. Hawley Global Magnetohydrodynamic Simulations of Cylindrical Keplerian Disks , 2000, astro-ph/0011501.

[56]  J. Krolik,et al.  Global MHD Simulation of the Inner Accretion Disk in a Pseudo-Newtonian Potential , 2000, astro-ph/0006456.

[57]  S. Miyama,et al.  Magnetorotational Instability in Protoplanetary Disks. II. Ionization State and Unstable Regions , 2000, astro-ph/0005464.

[58]  James M. Stone,et al.  The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks , 2000, astro-ph/0001164.

[59]  J. M. Stone,et al.  The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion Disk , 1999, astro-ph/9912135.

[60]  M. Machida,et al.  Global Simulations of Differentially Rotating Magnetized Disks: Formation of Low-β Filaments and Structured Coronae , 1999, The Astrophysical journal.

[61]  J. Hawley Global Magnetohydrodynamical Simulations of Accretion Tori , 1999, astro-ph/9907385.

[62]  J. Papaloizou,et al.  On the Dynamical Foundations of α Disks , 1999, astro-ph/9903035.

[63]  L. Jin Damping of the Shear Instability in Magnetized Disks by Ohmic Diffusion , 1996 .

[64]  Robert F. Stein,et al.  Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow , 1995 .

[65]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[66]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[67]  O. Blaes,et al.  LOCAL SHEAR INSTABILITIES IN WEAKLY IONIZED, WEAKLY MAGNETIZED DISKS , 1994 .

[68]  D. Lin,et al.  Two-dimensional viscous accretion disk models. I - On meridional circulations in radiative regions , 1992 .

[69]  John F. Hawley,et al.  A Powerful Local Shear Instability in Weakly Magnetized Disks. II. Nonlinear Evolution , 1991 .

[70]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[71]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[72]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[73]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[74]  R. Matsumoto INSTITUTE FOR FUSION STUDIES Magnetic Viscosity by Localized Shear Flow Instability in Magnetized Accretion Disks THE UNIVERSITY OF TEXAS , 2008 .

[75]  Status: Submitted to ApJ , 2005 .

[76]  J. Stone,et al.  The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks , 1999 .

[77]  P. Armitage ApJ Letters, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 TURBULENCE AND ANGULAR MOMENTUM TRANSPORT IN A GLOBAL ACCRETION DISK SIMULATION , 1998 .

[78]  J. Hawley,et al.  Instability, turbulence, and enhanced transport in accretion disks , 1997 .

[79]  C. Gammie,et al.  Local three-dimensional simulations of an accretion disk hydromagnetic dynamo , 1996 .

[80]  James M. Stone,et al.  Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks , 1996 .

[81]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 DISK WINDS DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND DISPERSAL OF PROTO-PLANETARY DISKS , 2022 .

[82]  S. Inutsuka,et al.  Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks , 2022 .