The Trouble with Water: Condensation, Circulation and Climate

[1]  H. Brogniez,et al.  On the Relative Humidity of the Atmosphere , 2021, The Global Circulation of the Atmosphere.

[2]  K. Kohary,et al.  Atmospheric Convection Plays a Key Role in the Climate of Tidally Locked Terrestrial Exoplanets: Insights from High-resolution Simulations , 2020, The Astrophysical Journal.

[3]  Jonathan L. Mitchell,et al.  Titan’s climate patterns and surface methane distribution due to the coupling of land hydrology and atmosphere , 2020 .

[4]  G. Vallis,et al.  Hierarchical Modeling of Solar System Planets with Isca , 2019, Atmosphere.

[5]  G. Vallis,et al.  The Presence of Africa and Limited Soil Moisture Contribute to Future Drying of South America , 2019, Geophysical Research Letters.

[6]  G. Vallis,et al.  Convective organization and eastward propagating equatorial disturbances in a simple excitable system , 2019, Quarterly Journal of the Royal Meteorological Society.

[7]  K. Emanuel,et al.  Intraseasonal Variability in a Cloud-Permitting Near-Global Equatorial Aquaplanet Model , 2018, Journal of the Atmospheric Sciences.

[8]  G. Vallis,et al.  A simple system for moist convection: the Rainy–Bénard model , 2018, Journal of Fluid Mechanics.

[9]  V. Zeitlin,et al.  An improved moist‐convective rotating shallow‐water model and its application to instabilities of hurricane‐like vortices , 2018, Quarterly Journal of the Royal Meteorological Society.

[10]  C. Sotin,et al.  Titan's Meteorology Over the Cassini Mission: Evidence for Extensive Subsurface Methane Reservoirs , 2018, Geophysical Research Letters.

[11]  G. Vallis,et al.  A Stochastic Lagrangian Basis for a Probabilistic Parameterization of Moisture Condensation in Eulerian Models , 2018, Journal of the Atmospheric Sciences.

[12]  M. Jucker,et al.  Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity , 2017 .

[13]  J. Tribbia,et al.  Tropical atmospheric Madden-Julian Oscillation: A strongly nonlinear free solitary Rossby wave? , 2017 .

[14]  G. Vallis Geophysical fluid dynamics: whence, whither and why? , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Jonathan L. Mitchell,et al.  The Climate of Titan , 2016 .

[16]  David A. Randall,et al.  Global‐scale convective aggregation: Implications for the Madden‐Julian Oscillation , 2015 .

[17]  P. O’Gorman,et al.  The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” Scaling Does Not Hold over Land , 2015 .

[18]  G. Vallis,et al.  Response of the large‐scale structure of the atmosphere to global warming , 2015 .

[19]  J. Lunine,et al.  GCM simulations of Titan’s middle and lower atmosphere and comparison to observations , 2014, 1412.7995.

[20]  A. Hayes,et al.  Simulations of Titan’s paleoclimate , 2014, 1412.7997.

[21]  S. Woolnough,et al.  Using a case‐study approach to improve the Madden–Julian oscillation in the Hadley Centre model , 2014 .

[22]  E. Maloney,et al.  Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs , 2014 .

[23]  A. Showman,et al.  ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS , 2014, 1407.6349.

[24]  Steven J. Woolnough,et al.  The Effects of Explicit versus Parameterized Convection on the MJO in a Large-Domain High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale Organization and Propagation* , 2013 .

[25]  D. Thomson,et al.  History of Lagrangian Stochastic Models for Turbulent Dispersion , 2013 .

[26]  Eric D. Maloney,et al.  Moisture Modes and the Eastward Propagation of the MJO , 2013 .

[27]  D. Frierson,et al.  Twenty-First-Century Multimodel Subtropical Precipitation Declines Are Mostly Midlatitude Shifts , 2012 .

[28]  Jonathan L. Mitchell,et al.  TITAN'S TRANSPORT-DRIVEN METHANE CYCLE , 2012, 1206.5207.

[29]  T. Schneider,et al.  Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle , 2012, Nature.

[30]  P. Read Dynamics and circulation regimes of terrestrial planets , 2011 .

[31]  W. Young,et al.  The advection–condensation model and water‐vapour probability density functions , 2011, 1105.0470.

[32]  Wataru Ohfuchi,et al.  An improved PDF cloud scheme for climate simulations , 2010 .

[33]  Tammy M. Weckwerth,et al.  Tropospheric water vapor, convection, and climate , 2010 .

[34]  Olivier Pauluis,et al.  The Global Atmospheric Circulation in Moist Isentropic Coordinates , 2010 .

[35]  A. Hayes,et al.  An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing , 2009 .

[36]  K. Menou,et al.  Atmospheric Circulation of Exoplanets , 2009, 0911.3170.

[37]  Ping Liu,et al.  An MJO Simulated by the NICAM at 14- and 7-km Resolutions , 2009 .

[38]  T. Schneider,et al.  Storms in the tropics of Titan , 2009, Nature.

[39]  C. Sotin,et al.  Global circulation as the main source of cloud activity on Titan , 2009, Nature.

[40]  David J. Raymond,et al.  Moisture modes and the Madden-Julian oscillation. , 2009 .

[41]  H. Roe Titan's Methane Weather , 2009 .

[42]  J. Neelin,et al.  Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming , 2009 .

[43]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description , 2008 .

[44]  Olivier Pauluis,et al.  Thermodynamic Consistency of the Anelastic Approximation for a Moist Atmosphere , 2008 .

[45]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[46]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[47]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[48]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[49]  F. Ferri,et al.  Methane drizzle on Titan , 2006, Nature.

[50]  E. Barth,et al.  Methane, ethane, and mixed clouds in Titan's atmosphere : Properties derived from microphysical modeling , 2006 .

[51]  F. Hourdin,et al.  The Latitudinal Distribution of Clouds on Titan , 2006, Science.

[52]  Chidong Zhang,et al.  Madden‐Julian Oscillation , 2005 .

[53]  Duane E. Waliser,et al.  Intraseasonal Variability in the Atmosphere-Ocean Climate System , 2005 .

[54]  I. Held,et al.  The role of moisture in the dynamics and energetics of turbulent baroclinic eddies , 2004 .

[55]  M. Fantini Baroclinic Instability of a Zero-PVE Jet: Enhanced Effects of Moisture on the Life Cycle of Midlatitude Cyclones , 2004 .

[56]  A. Bouchez,et al.  Direct detection of variable tropospheric clouds near Titan's south pole , 2002, Nature.

[57]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[58]  D. Raymond A New Model of the Madden–Julian Oscillation , 2001 .

[59]  J. L. Hall,et al.  Detection of daily clouds on Titan. , 2000, Science.

[60]  K. Emanuel,et al.  Hierarchical Tropical Cloud Systems in an Analog Shallow-Water Model. , 1995 .

[61]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[62]  E. Meron Pattern formation in excitable media , 1992 .

[63]  C. McKay,et al.  The greenhouse and antigreenhouse effects on Titan , 1991, Science.

[64]  A. Barcilon,et al.  Moist Stability of a Baroclinic Zonal Flow with Conditionally Unstable Stratification , 1986 .

[65]  A. Barcilon,et al.  Simulation of moist mountain waves with an anelastic model , 1985 .

[66]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[67]  A. E. Gill Some simple solutions for heat‐induced tropical circulation , 1980 .

[68]  J. Deardorff,et al.  Subgrid-Scale Condensation in Models of Nonprecipitating Clouds , 1977 .

[69]  George L. Mellor,et al.  The Gaussian Cloud Model Relations , 1977 .

[70]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[71]  P. Welander An Advective Model of the Ocean Thermocline , 1959 .

[72]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[73]  H. Stommel,et al.  The westward intensification of wind‐driven ocean currents , 1948 .

[74]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[75]  Heinrich Morf,et al.  The Parameterization of Cloud Cover , 2014 .

[76]  C. Jakob,et al.  PARAMETERIZATION OF PHYSICAL PROCESSES | Clouds , 2003 .

[77]  Edward N. Lorenz,et al.  The nature and theory of the general circulation of the atmosphere , 1967 .

[78]  T. Matsuno,et al.  Quasi-geostrophic motions in the equatorial area , 1966 .

[79]  D. Schrag,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 and S2 References a Sulfur Dioxide Climate Feedback on Early Mars , 2022 .

[80]  Edinburgh Research Explorer The effect of coherent stirring on the advection–condensation of water vapour , 2022 .