Instability of the Ionospheric Plasma: Modeling and Analysis

This paper is concerned with the theory and modeling of plasma instabilities in the ionosphere. We first consider the so-called striation model, which consists of balance equations for the density and momenta of the plasma species, coupled with an elliptic equation for the potential. The linearized instability of this model is analyzed in the framework of Fourier theory, both for smooth and discontinuous steady states. Then, we show that the dissipation mechanisms at work in the more refined "dynamo model" allow us to stabilize high wave-number perturbations. We also analyze turbulence as a possible source of additional dissipation (in a similar way as in fluid mechanics). To this aim, we use the statistical approach to turbulence and derive a so-called turbulent striation model, of which we analyze the stability properties. Numerical experiments are used to support our investigations.

[1]  Elisabeth Blanc,et al.  Kilometric irregularities in the E and F regions of the daytime equatorial ionosphere observed by a high resolution HF radar , 1996 .

[2]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere, 3. Numerical simulations of a multilevel model with recombination chemistry , 1976 .

[3]  D. T. Farley,et al.  GENERATION OF SMALL-SCALE IRREGULARITIES IN THE EQUATORIAL ELECTROJET. , 1973 .

[4]  本蔵 義守,et al.  F. Krause and K. -H. Radler: Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford and New York, 271ページ, 21.5×15.5cm, 10,800円. , 1982 .

[5]  J. St.‐Maurice,et al.  A turbulent theoretical framework for the study of current‐driven E region irregularities at high latitudes: Basic derivation and application to gradient‐free situations , 1993 .

[6]  Yan Guo,et al.  Nonlinear instability of double-humped equilibria , 1995 .

[7]  Olivier Pironneau,et al.  Analysis of the K-Epsilon Turbulence , 1993 .

[8]  P. Degond,et al.  A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING , 2004 .

[9]  Niels F. Otani,et al.  Saturation of the Farley‐Buneman instability via nonlinear electron E×B drifts , 1996 .

[10]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  Marcel Lesieur,et al.  Turbulence in Fluids: Stochastic and Numerical Modelling , 1987 .

[13]  C. Ronchi,et al.  Effect of short‐scale turbulence on kilometer wavelength irregularities in the equatorial electrojet , 1990 .

[14]  M. J. Keskinen,et al.  Nonlinear theory of the E × B instability with an inhomogeneous electric field , 1984 .

[15]  S. Matsushita,et al.  On artificial geomagnetic and ionospheric storms associated with high‐altitude explosions , 1959 .

[16]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[17]  Corrado Ronchi,et al.  Numerical simulations of large‐scale plasma turbulence in the daytime equatorial electrojet , 1991 .

[18]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere: 2. Numerical simulation of a nonlinear two‐dimensional model , 1973 .

[19]  Alexis Vasseur,et al.  Classical and quantum transport in random media , 2003 .

[20]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[21]  George C. Reid,et al.  The formation of small‐scale irregularities in the ionosphere , 1968 .

[22]  Sidney L. Ossakow,et al.  Three‐dimensional nonlinear evolution of equatorial ionospheric spread‐F bubbles , 2003 .

[23]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[24]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere: 1 , 1973 .

[25]  Christophe Besse,et al.  Numerical simulations of the ionospheric striation model in a non-uniform magnetic field , 2007, Comput. Phys. Commun..

[26]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[27]  Sidney L. Ossakow,et al.  Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity , 1982 .

[28]  P. Degond,et al.  Nonlinear Instability of the Two-Dimensional Striation Model About Smooth Steady States , 2007 .

[29]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[30]  Ahmed M. Hamza,et al.  A fully self‐consistent fluid theory of anomalous transport in Farley‐Buneman turbulence , 1995 .

[31]  Yan Guo,et al.  On the Dynamical Rayleigh-Taylor Instability , 2003 .

[32]  Christophe Grimault Caracterisation des canaux de propagation satellite-terre shf et ehf en presence de plasma post-nucleaire , 1995 .

[33]  R. LeVeque Numerical methods for conservation laws , 1990 .

[34]  W. Baker,et al.  ELECTRIC CURRENTS IN THE IONOSPHERE , 2007 .

[35]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[36]  G. Papanicolaou,et al.  A limit theorem for stochastic acceleration , 1980 .

[37]  B. Desjardins,et al.  Linear instability implies nonlinear instability for various types of viscous boundary layers , 2003 .

[38]  S. L. Ossakow,et al.  Morphological studies of rising equatorial Spread F bubbles. Interim report , 1977 .

[39]  A. Farmer,et al.  The solar-terrestrial environment , 1996 .

[40]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[41]  O. Pironneau,et al.  Analysis of the K-epsilon turbulence model , 1994 .

[42]  D. F. Martyn,et al.  Electric currents in the ionosphere - The conductivity , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.