UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis

[1]  O. Fernandez-Capetillo,et al.  Targeting the nucleolus as a therapeutic strategy in human disease. , 2022, Trends in biochemical sciences.

[2]  Bo Gao,et al.  Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress , 2022, Frontiers in Oncology.

[3]  W. Gu,et al.  CRL2-KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14ARF degradation , 2021, Cell Death & Differentiation.

[4]  J. Bartek,et al.  RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis , 2021, Cell Death & Differentiation.

[5]  Shanshan Wang,et al.  Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP , 2021, Proceedings of the National Academy of Sciences.

[6]  A. Russo,et al.  Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins , 2021, International journal of molecular sciences.

[7]  B. Stockwell,et al.  Ferroptosis: mechanisms, biology and role in disease , 2021, Nature Reviews Molecular Cell Biology.

[8]  Canhua Huang,et al.  BCL7C suppresses ovarian cancer growth by inactivating mutant p53 , 2020, Journal of molecular cell biology.

[9]  Zhangzhi Zhu,et al.  Identification of potential crucial genes associated with the pathogenesis and prognosis of liver hepatocellular carcinoma , 2020, Journal of Clinical Pathology.

[10]  L. Zhuang,et al.  Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy , 2020, Protein & Cell.

[11]  C. Lanni,et al.  Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways , 2020, Molecular Psychiatry.

[12]  Shanshan Wang,et al.  Dual regulation of p53 by the ribosome maturation factor SBDS , 2020, Cell Death & Disease.

[13]  Chris Sander,et al.  Pathway Commons 2019 Update: integration, analysis and exploration of pathway data , 2019, Nucleic Acids Res..

[14]  A. Russo,et al.  Therapeutic Approaches Targeting Nucleolus in Cancer , 2019, Cells.

[15]  Bo Li,et al.  Six genes as potential diagnosis and prognosis biomarkers for hepatocellular carcinoma through data mining , 2019, Journal of cellular physiology.

[16]  Donna D. Zhang,et al.  NRF2 and the Hallmarks of Cancer. , 2018, Cancer cell.

[17]  B. Stockwell,et al.  Unsolved mysteries: How does lipid peroxidation cause ferroptosis? , 2018, PLoS biology.

[18]  B. Cao,et al.  SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer , 2018, eLife.

[19]  George Thomas,et al.  Ribosome biogenesis in cancer: new players and therapeutic avenues , 2017, Nature Reviews Cancer.

[20]  W. Gu,et al.  NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression. , 2017, Molecular cell.

[21]  G. Kroemer,et al.  The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. , 2017, Cell reports.

[22]  A. Russo,et al.  Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells , 2017, International journal of molecular sciences.

[23]  Xiaoping Zhou,et al.  Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator , 2016, eLife.

[24]  Bingding Huang,et al.  SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing , 2016, Nature Communications.

[25]  Xiang Zhou,et al.  Ribosomal proteins: functions beyond the ribosome. , 2015, Journal of molecular cell biology.

[26]  W. Gu,et al.  Ferroptosis as a p53-mediated activity during tumour suppression , 2015, Nature.

[27]  Xiang Zhou,et al.  The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress , 2014, eLife.

[28]  K. Itoh,et al.  Nrf2- and ATF4-Dependent Upregulation of xCT Modulates the Sensitivity of T24 Bladder Carcinoma Cells to Proteasome Inhibition , 2014, Molecular and Cellular Biology.

[29]  C. Bieberich,et al.  A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. , 2014, Cancer cell.

[30]  R. Hannan,et al.  The nucleolus: an emerging target for cancer therapy. , 2013, Trends in molecular medicine.

[31]  Xiang Zhou,et al.  Ribosomal Protein S14 Negatively Regulates c-Myc Activity* , 2013, The Journal of Biological Chemistry.

[32]  Qi Zhang,et al.  Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress , 2013, Oncogene.

[33]  C. Prives,et al.  Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress , 2012, Proceedings of the National Academy of Sciences.

[34]  Carleen Cullinane,et al.  Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. , 2012, Cancer cell.

[35]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[36]  Zhongming Zhao,et al.  GenRev: exploring functional relevance of genes in molecular networks. , 2012, Genomics.

[37]  R. Hannan,et al.  Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. , 2011, Cancer research.

[38]  K. Bhat,et al.  An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. , 2010, Cancer cell.

[39]  M. Dai,et al.  Perturbation of 60 S Ribosomal Biogenesis Results in Ribosomal Protein L5- and L11-dependent p53 Activation* , 2010, The Journal of Biological Chemistry.

[40]  D. Felsher,et al.  MYC as a regulator of ribosome biogenesis and protein synthesis , 2010, Nature Reviews Cancer.

[41]  Yanping Zhang,et al.  Signaling to p53: ribosomal proteins find their way. , 2009, Cancer cell.

[42]  Amy Lin,et al.  Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. , 2009, Cancer research.

[43]  X. Jacq,et al.  Ribosomal protein S7 is both a regulator and a substrate of MDM2. , 2009, Molecular cell.

[44]  P. Pandolfi,et al.  Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction , 2009, Nature Cell Biology.

[45]  M. Dai,et al.  Mycophenolic Acid Activation of p53 Requires Ribosomal Proteins L5 and L11* , 2008, Journal of Biological Chemistry.

[46]  W. Wang,et al.  Ribosomal protein S7 as a novel modulator of p53–MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function , 2007, Oncogene.

[47]  M. Dai,et al.  Inhibition of c‐Myc activity by ribosomal protein L11 , 2007, The EMBO journal.

[48]  M. Dai,et al.  5-Fluorouracil Activation of p53 Involves an MDM2-Ribosomal Protein Interaction* , 2007, Journal of Biological Chemistry.

[49]  Chad Deisenroth,et al.  Cancer-Associated Mutations in the MDM2 Zinc Finger Domain Disrupt Ribosomal Protein Interaction and Attenuate MDM2-Induced p53 Degradation , 2006, Molecular and Cellular Biology.

[50]  J. Gallagher,et al.  The Small-Subunit Processome Is a Ribosome Assembly Intermediate , 2004, Eukaryotic Cell.

[51]  M. Dai,et al.  Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5* , 2004, Journal of Biological Chemistry.

[52]  M. Dai,et al.  Ribosomal Protein L23 Activates p53 by Inhibiting MDM2 Function in Response to Ribosomal Perturbation but Not to Translation Inhibition , 2004, Molecular and Cellular Biology.

[53]  K. Itahana,et al.  Inhibition of HDM2 and Activation of p53 by Ribosomal Protein L23 , 2004, Molecular and Cellular Biology.

[54]  T. Allio,et al.  Ribosomal Protein L11 Negatively Regulates Oncoprotein MDM2 and Mediates a p53-Dependent Ribosomal-Stress Checkpoint Pathway , 2003, Molecular and Cellular Biology.

[55]  M. Kubbutat,et al.  Regulation of HDM2 activity by the ribosomal protein L11. , 2003, Cancer cell.

[56]  J. Shabanowitz,et al.  A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis , 2002, Nature.

[57]  Y. Nagai,et al.  Characterizing CGI‐94 (comparative gene identification‐94) which is down‐regulated in the hippocampus of early stage Alzheimer's disease brain , 2002, The European journal of neuroscience.

[58]  L. Comai,et al.  Repression of RNA Polymerase I Transcription by the Tumor Suppressor p53 , 2000, Molecular and Cellular Biology.

[59]  Wen-chang Lin,et al.  Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. , 2000, Genome research.

[60]  Robert J White,et al.  p53 is a general repressor of RNA polymerase III transcription , 1998, The EMBO journal.

[61]  C. Schmid,et al.  p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner , 1996, Molecular and cellular biology.

[62]  Y. Zhang,et al.  Extra-Ribosome Functions of Ribosomal Proteins , 2016 .