Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems

We give a sharply-vertex-transitive solution of each of the nine Hamilton-Waterloo problems left open by Danziger, Quattrocchi and Stevens.

[1]  Tommaso Traetta,et al.  Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles , 2015, Discret. Math..

[2]  Marco Buratti,et al.  A Cyclic Solution for an Infinite Class of Hamilton–Waterloo Problems , 2016, Graphs Comb..

[3]  Sibel Ozkan,et al.  The Hamilton-Waterloo Problem with C4 and Cm factors , 2015, Discret. Math..

[4]  Dean G. Hoffman,et al.  The existence of Ck-factorizations of K2n-F , 1991, Discret. Math..

[5]  Simona Bonvicini,et al.  Some progress on the existence of 1-rotational Steiner triple systems , 2011, Designs, Codes and Cryptography.

[6]  Marco Buratti Rotational k‐cycle systems of order v < 3k; another proof of the existence of odd cycle systems , 2003 .

[7]  Tommaso Traetta,et al.  A complete solution to the two-table Oberwolfach problems , 2013, J. Comb. Theory, Ser. A.

[8]  Marco Buratti,et al.  1‐Rotational Steiner triple systems over arbitrary groups , 2001 .

[9]  P. Danziger,et al.  On the Hamilton–Waterloo Problem with Odd Orders , 2015, 1510.07079.

[10]  Douglas R. Stinson,et al.  The Oberwolfach problem and factors of uniform odd length cycles , 1989, J. Comb. Theory, Ser. A.

[11]  Brett Stevens,et al.  The Hamilton–Waterloo problem for cycle sizes 3 and 4 , 2009 .

[12]  Marco Buratti Cycle decomposition with a sharply vertex transitive automorphism group , 2006 .

[13]  Victor Scharaschkin,et al.  Complete solutions to the Oberwolfach problem for an infinite set of orders , 2009, J. Comb. Theory, Ser. B.

[14]  Marco Buratti,et al.  On sharply vertex transitive 2-factorizations of the complete graph , 2005, J. Comb. Theory, Ser. A.