Extended light scattering model incorporating coherence for thin-film silicon solar cells

We present a comprehensive scalar light-scattering model for the optical simulation of silicon thin film solar cells. The model integrates coherent light propagation in thin layers with a direct, non-iterative treatment of light scattered at rough layer interfaces. The direct solution approach ensures computational efficiency, which is a key advantage for extensive calculations in the context of evaluation of different cell designs and parameter extraction. We validate the model with experimental external quantum efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well with measurements for cells deposited on both rough and flat substrates. The model is then applied to study the influence of the absorber layer thickness on the maximum achievable photocurrent for the two cell types. This efficient numerical framework will enable a quantitative model-based assessment of the optimization potential for light trapping in textured thin film silicon solar cells.

[1]  H. Herzig,et al.  Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings. , 2011, Optics express.

[2]  Christophe Ballif,et al.  Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance , 2009 .

[3]  Michio Kondo,et al.  Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells , 2009 .

[4]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[5]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates , 2002 .

[6]  Stuart Wenham,et al.  Ray-tracing of arbitrary surface textures for light-trapping in thin silicon solar cells , 1997 .

[7]  A. Fejfar,et al.  Optical absorption and light scattering in microcrystalline silicon thin films and solar cells , 2000 .

[8]  Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells , 2008 .

[9]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[10]  C. K. Carniglia,et al.  Scalar Scattering Theory for Multilayer Optical Coatings , 1979 .

[11]  C. Ballif,et al.  Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells , 2010 .

[12]  R. Santbergen,et al.  Modeling the thermal absorption factor of photovoltaic/thermal combi-panels , 2006 .

[13]  Christophe Ballif,et al.  TCOs for nip thin film silicon solar cells , 2009 .

[14]  Y. Hayashi,et al.  Efficiency of the a-Si:H solar cell and grain size of SnO2transparent conductive film , 1983, IEEE Electron Device Letters.

[15]  N. Wyrsch,et al.  Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells , 2011 .

[16]  C. Battaglia,et al.  Modeling of light scattering from micro- and nanotextured surfaces , 2010 .

[17]  Carsten Rockstuhl,et al.  Light localization at randomly textured surfaces for solar-cell applications , 2007 .

[18]  M. Zeman,et al.  The AM1.5 absorption factor of thin-film solar cells , 2010 .

[19]  M. Zeman,et al.  Modeling and optimization of white paint back reflectors for thin-film silicon solar cells , 2010 .

[20]  M. Vaněček,et al.  Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and `micromorph tandem' solar cells , 2004 .