Piezotronic effect boosted photocatalytic performance of NiO@PbTiO3 p-n heterojunction

[1]  Jingkun Xu,et al.  Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review , 2021 .

[2]  Zaizhu Lou,et al.  Engineering plasmonic semiconductors for enhanced photocatalysis , 2021, Journal of Materials Chemistry A.

[3]  Dou Zhang,et al.  Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect , 2021 .

[4]  Tingting Xu,et al.  High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 , 2021 .

[5]  Dongyun Chen,et al.  Efficient piezocatalytic removal of BPA and Cr(VI) with SnS2/CNFs membrane by harvesting vibration energy , 2021 .

[6]  Jianrong Chen,et al.  Cocatalyst Engineering in Piezocatalysis: A Promising Strategy for Boosting Hydrogen Evolution. , 2021, ACS applied materials & interfaces.

[7]  Jie Yuan,et al.  Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production , 2021 .

[8]  H. Qiu,et al.  Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants , 2020 .

[9]  Hongzheng Chen,et al.  Polymer Modification on NiOx Hole Transport Layer Boosts Open-Circuit Voltage to 1.19 V for Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[10]  Yihe Zhang,et al.  Piezocatalysis and Piezo‐Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application , 2020, Advanced Functional Materials.

[11]  P. R. Yaashikaa,et al.  Photocatalysis for removal of environmental pollutants and fuel production: a review , 2020, Environmental Chemistry Letters.

[12]  Yuanhua Lin,et al.  Exclusive enhancement of catalytic activity in Bi0.5Na0.5TiO3nanostructures: new insights into the design of efficient piezocatalysts and piezo-photocatalysts , 2020 .

[13]  Wei Li,et al.  Charge separation and interfacial selectivity induced by synergistic effect of ferroelectricity and piezoelectricity on PbTiO3 monocrystalline nanoplates , 2020 .

[14]  Liu Jun-ming,et al.  Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors , 2020 .

[15]  J. Zhai,et al.  Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166 Br0.834 ) Piezoelectric Composites. , 2020, Small.

[16]  O. Amiri,et al.  Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration. , 2020, Journal of hazardous materials.

[17]  W. Nie,et al.  Internal‐Field‐Enhanced Charge Separation in a Single‐Domain Ferroelectric PbTiO3 Photocatalyst , 2020, Advanced materials.

[18]  Jianpeng Shi,et al.  In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production , 2019 .

[19]  K. Parida,et al.  An energy band compactable B-rGO/PbTiO3 p-n junction: a highly dynamic and durable photocatalyst for enhanced photocatalytic H2 evolution. , 2019, Nanoscale.

[20]  A. Verdaguer,et al.  Surface charged species and electrochemistry of ferroelectric thin films. , 2019, Nanoscale.

[21]  J. Nan,et al.  Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: Facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity , 2019, Chemical Engineering Journal.

[22]  K. Parida,et al.  Stupendous Photocatalytic Activity of p-BiOI/n-PbTiO3 Heterojunction: The Significant Role of Oxygen Vacancies and Interface Coupling , 2019, The Journal of Physical Chemistry C.

[23]  Yihe Zhang,et al.  The Role of Polarization in Photocatalysis. , 2019, Angewandte Chemie.

[24]  Zhiqun Lin,et al.  Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. , 2019, Angewandte Chemie.

[25]  Yuanhua Lin,et al.  Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects , 2019, Nano Energy.

[26]  Chunying Chao,et al.  Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity , 2019, Applied Surface Science.

[27]  J. Wu,et al.  Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect , 2019, Nano Energy.

[28]  Jun-ying Tang,et al.  Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction , 2018, Applied Catalysis B: Environmental.

[29]  Hui‐Ming Cheng,et al.  Selective Chemical Epitaxial Growth of TiO2 Islands on Ferroelectric PbTiO3 Crystals to Boost Photocatalytic Activity , 2018, Joule.

[30]  V. Vaiano,et al.  Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag , 2018, Applied Catalysis B: Environmental.

[31]  Jun Ke,et al.  Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism , 2018 .

[32]  Jinhua Ye,et al.  Synergetic Exfoliation and Lateral Size Engineering of MoS2 for Enhanced Photocatalytic Hydrogen Generation. , 2018, Small.

[33]  D. Bao,et al.  Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration , 2018 .

[34]  P. Ayyub,et al.  pn Heterojunctions in NiO:TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation , 2018 .

[35]  G. Zeng,et al.  Doping of graphitic carbon nitride for photocatalysis: A reveiw , 2017 .

[36]  K. Parida,et al.  CuO/PbTiO3: A new-fangled p–n junction designed for the efficient absorption of visible light with augmented interfacial charge transfer, photoelectrochemical and photocatalytic activities , 2017 .

[37]  J. Chu,et al.  Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films , 2015 .

[38]  Jiaguo Yu,et al.  Engineering heterogeneous semiconductors for solar water splitting , 2015 .

[39]  I. Dincer,et al.  A review on selected heterogeneous photocatalysts for hydrogen production , 2014 .

[40]  H. Fan,et al.  Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. , 2014, Nano letters.

[41]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[42]  Muhammad Safdar,et al.  Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. , 2013, Nanoscale.

[43]  Zhen Xiao,et al.  Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. , 2012, Angewandte Chemie.

[44]  Sergei V. Kalinin,et al.  Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements , 2004 .

[45]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[46]  M. Haghighi,et al.  Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation , 2018 .

[47]  Sergei V. Kalinin,et al.  Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics , 2006 .