Time-space lower bounds for satisfiability

We establish the first polynomial time-space lower bounds for satisfiability on general models of computation. We show that for any constant <i>c</i> less than the golden ratio there exists a positive constant <i>d</i> such that no deterministic random-access Turing machine can solve satisfiability in time <i>n</i><sup><i>c</i></sup> and space <i>n</i><sup><i>d</i></sup>, where <i>d</i> approaches 1 when <i>c</i> does. On conondeterministic instead of deterministic machines, we prove the same for any constant <i>c</i> less than &2radic;.Our lower bounds apply to nondeterministic linear time and almost all natural NP-complete problems known. In fact, they even apply to the class of languages that can be solved on a nondeterministic machine in linear time and space <i>n</i><sup><i>1/c</i></sup>.Our proofs follow the paradigm of indirect diagonalization. We also use that paradigm to prove time-space lower bounds for languages higher up in the polynomial-time hierarchy.

[1]  Ran Raz,et al.  A time lower bound for satisfiability , 2004, Theor. Comput. Sci..

[2]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[3]  M. Nivat Theoretical Computer Science Volume 213-214 , 1999 .

[4]  Zvi Galil,et al.  A time-space tradeoff for language recognition , 2005, Mathematical systems theory.

[5]  Endre Szemerédi,et al.  On determinism versus non-determinism and related problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  Michael E. Saks,et al.  Super-linear time-space tradeoff lower bounds for randomized computation , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  Alan R. Woods,et al.  Bounded Arithmetic Formulas and Turing Machines of Constant Alternation , 1986 .

[8]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[9]  Lance Fortnow,et al.  Time-Space Tradeos for Satisability , 1997 .

[10]  Vladimiro Sassone,et al.  Bulletin of the European Association for Theoretical Computer Science , 2005 .

[11]  Albert R. Meyer,et al.  On Time-Space Classes and their Relation to the Theory of Real Addition , 1980, Theor. Comput. Sci..

[12]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[13]  Richard Edwin Stearns,et al.  Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.

[14]  Stephen A. Cook,et al.  Short Propositional Formulas Represent Nondeterministic Computations , 1988, Inf. Process. Lett..

[15]  Eric Allender,et al.  Time-space tradeoffs in the counting hierarchy , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[18]  Ravi Kannan Towards separating nondeterminism from determinism , 2005, Mathematical systems theory.

[19]  Lance Fortnow,et al.  Diagonalization , 2000, Bull. EATCS.

[20]  Claus-Peter Schnorr Satisfiability Is Quasilinear Complete in NQL , 1978, JACM.

[21]  Carsten Lund,et al.  Interactive Proof Systems and Alternating Time-Space Complexity , 1991, STACS.

[22]  Walter L. Ruzzo,et al.  Tree-Size Bounded Alternation , 1980, J. Comput. Syst. Sci..

[23]  Miklós Ajtai,et al.  A Non-linear Time Lower Bound for Boolean Branching Programs , 2005, Theory Comput..

[24]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[25]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[26]  Iannis Tourlakis Time-space lower bounds for SAT on uniform and non-uniform machines , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[27]  Lance Fortnow,et al.  Time-Space Tradeoffs for Satisfiability , 2000, J. Comput. Syst. Sci..

[28]  Wolfgang J. Paul,et al.  On alternation , 1980, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[29]  Saharon Shelah,et al.  Nearly Linear Time , 1989, Logic at Botik.

[30]  Iannis Tourlakis Time-Space Tradeoffs for SAT on Nonuniform Machines , 2001, J. Comput. Syst. Sci..

[31]  D. Melkebeek TIME-SPACE LOWER BOUNDS FOR NP-COMPLETE PROBLEMS , 2004 .

[32]  Richard J. Lipton,et al.  On the complexity of SAT , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[33]  Lance Fortnow,et al.  Time-space tradeoffs for nondeterministic computation , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.