High Resolution Schemes for a Hierarchical Size-Structured Model

In this paper we discuss two explicit finite difference schemes, namely a first order upwind scheme and a second order high resolution scheme, for solving a hierarchical size-structured population model with nonlinear growth, mortality, and reproduction rates. We prove stability and convergence for both schemes and provide numerical examples to demonstrate their capability in solving smooth and discontinuous solutions.

[1]  Francis Filbet,et al.  Approximation of Hyperbolic Models for Chemosensitive Movement , 2005, SIAM J. Sci. Comput..

[2]  R. LeVeque Numerical methods for conservation laws , 1990 .

[3]  Joan Saldaña,et al.  Asymptotic behaviour of a model of hierarchically structured population dynamics , 1997 .

[4]  E. Kraev,et al.  EXISTENCE AND UNIQUENESS FOR HEIGHT STRUCTURED HIERARCHICAL POPULATION MODELS , 2001 .

[5]  Azmy S. Ackleh,et al.  A Quasilinear Hierarchical Size-Structured Model: Well-Posedness and Approximation , 2005 .

[6]  Jacob Weiner,et al.  Size variability and competition in plant monocultures , 1986 .

[7]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[8]  Jim M Cushing,et al.  Juvenile versus adult competition , 1991 .

[9]  Kbenesh W. Blayneh,et al.  A hierarchical size-structured population model. , 1996 .

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[12]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[13]  Jim M Cushing,et al.  The dynamics of hierarchical age-structured populations , 1994 .

[14]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[15]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[16]  Jim M Cushing,et al.  Hierarchical models of intra-specific competition: scramble versus contest , 1996 .

[17]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .