A Simple Proof of the Density Hales–Jewett Theorem
暂无分享,去创建一个
Konstantinos Tyros | Pandelis Dodos | Vassilis Kanellopoulos | P. Dodos | V. Kanellopoulos | K. Tyros
[1] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[2] Paul Erdős,et al. Some remarks on set theory. IX. Combinatorial problems in measure theory and set theory. , 1964 .
[3] R. Graham,et al. Ramsey’s theorem for $n$-parameter sets , 1971 .
[4] Andras Hajnal,et al. Some remarks on set theory XI , 1974 .
[5] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[6] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[7] Saharon Shelah,et al. Primitive recursive bounds for van der Waerden numbers , 1988 .
[8] Bernd Voigt,et al. Graham-Rothschild Parameter Sets , 1990 .
[9] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[10] Randall McCutcheon,et al. Elemental Methods in Ergodic Ramsey Theory , 2000 .
[11] Tim Austin,et al. Deducing the Density Hales–Jewett Theorem from an Infinitary Removal Lemma , 2009, 0903.1633.
[12] D. Polymath,et al. A new proof of the density Hales-Jewett theorem , 2009, 0910.3926.
[13] A. Hales,et al. Regularity and Positional Games , 1963 .
[14] P. Dodos,et al. A density version of the Carlson--Simpson theorem , 2012, 1209.4985.