Electron transport and hot phonons in carbon nanotubes.

We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport scattering length, which we validate by accurate first principles calculations on (6, 6) and (11, 11) nanotubes. The comparison of our results with the scattering lengths fitted from experimental I-V curves indicates the presence of a nonequilibrium optical phonon heating induced by electron transport. We predict an effective temperature for optical phonons of thousands Kelvin.