A three‐parameter markov model for sedimentation

Considering velocity perturbations as white noise and assuming exponential decay of velocities to the mean velocity μ, we obtain a two-parameter Langevin equation. The conditional and steady-state probability density functions for instantaneous velocity are used to develop theoretical expressions for variables which can be measured experimentally. Support for the model is adduced from published data and our own experimental results. The parameter μ is obtained from the mean of the distance travelled in time T during steady state and the two Langevin parameters from its correlation coefficient and variance. Precision and bias in experimentation are discussed. Si l'on considere les perturbations des vitesses comme un bruit bizarre et qu'on suppose qu'il se produit une decroissance exponentielle des vitesses jusqu'a la vitesse moyenne μ, on obtient une equation de Langevin a deux parametres. On emploie les fonctions des densites de probabilites conditionnelles et stables pour la vitesse instantanee, afin de mettre au point des expressions theoriques pour des variables qu'on peut mesurer experimentalement Les donnees publiees et les resultats experimentaux de l'auteur du present travail militent en faveur du modele. On obtient le parametre μ a partir de la moyenne de la distance parcourue en temps T lors du regime stable, ainsi que les deux parametres de Langevin a partir de son coefficient de correlation et de sa variation. On discute la precision et la polarisation dans le travail experimental.

[1]  D. C. Pei,et al.  Stereophotogrammetry in particle‐flow investigation , 1969 .

[2]  T. A. King Laser technology. Lanchester Polytechnic, Rugby, UK, 18 May 1978 , 1978 .

[3]  R. G. Cox,et al.  The stokes translation of a particle of arbitrary shape along the axis of a circular cylinder , 1966 .

[4]  G. J. Kynch A theory of sedimentation , 1952 .

[5]  H. Brenner The Stokes resistance of an arbitrary particle—II: An extension , 1964 .

[6]  D. K. Pickard,et al.  A Markov model for sedimentation , 1977 .

[7]  E. Wacholder,et al.  The flow fields in and around a droplet moving axially within a tube , 1970, Journal of Fluid Mechanics.

[8]  B. Koglin Experimentelle Untersuchungen zur Sedimentation von Teilchenkomplexen in Suspensionen , 1972 .

[9]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[10]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[11]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[12]  P. T. Shannon,et al.  Batch and Continuous Thickening. Prediction of Batch Settling Behavior from Initial Rate Data with Results for Rigid Spheres , 1964 .

[13]  R. Pfeffer,et al.  A study of unsteady forces at low Reynolds number: a strong interaction theory for the coaxial settling of three or more spheres , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[14]  D. R. Oliver The sedimentation of suspensions of closely-sized spherical particles , 1961 .

[15]  B. Koglin Statistische Verteilung der Sedimentationsgeschwindigkeit in niedrig konzentrierten Suspensionen , 1971 .

[16]  G. Gilat,et al.  Method for smooth approximation of data , 1977 .

[17]  R. Johne Einfluß der Konzentration einer monodispersen Suspension auf die Sinkgeschwindigkeit ihrer Teilchen , 1966 .

[18]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[19]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[20]  P. T. Shannon,et al.  Reappraisal of Concept of Settling in Compression. Settling Behavior and Concentration Profiles for Initially Concentrated Calcium Carbonate Slurries , 1965 .