Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models - Impacts on Sea Level Variability around the Indonesian Seas

The focus of this study is the assessment of the main range and geophysical corrections needed to derive accurate sea level time series from satellite altimetry in the Indonesia seas, the ultimate aim being the determination of sea level trend for this region. Due to its island nature, this is an area of large complexity for altimetric studies, a true laboratory for coastal altimetry. For this reason, the selection of the best corrections for sea level anomaly estimation from satellite altimetry is of particular relevance in the Indonesian seas. The same happens with the mean sea surface adopted in the sea level anomaly computation due to the large gradients of the mean sea surface in this part of the ocean. This study has been performed using altimetric data from the three reference missions, TOPEX/Poseidon, Jason-1 and Jason-2, extracted from the Radar Altimeter Database System. Analyses of sea level anomaly variance differences, function of distance from the coast and at altimeter crossovers were used to assess the quality of the various corrections and mean sea surface models. The selected set of corrections and mean sea surface have been used to estimate the sea level anomaly time series. The rate of sea level rise for the Indonesian seas was found to be 4.2 ± 0.2 mm/year over the 23-year period (1993–2015).

[1]  Clara Lázaro,et al.  Improved wet path delays for all ESA and reference altimetric missions , 2015 .

[2]  O. Andersen,et al.  Estimates of vertical land motion along the southwestern coasts of Turkey from coastal altimetry and tide gauge data , 2013 .

[3]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[4]  Remko Scharroo,et al.  NON-PARAMETRIC SEA-STATE BIAS MODELS AND THEIR RELEVANCE TO SEA LEVEL CHANGE STUDIES , 2005 .

[5]  Philippe Gaspar,et al.  Improving Nonparametric Estimates of the Sea State Bias in Radar Altimeter Measurements of Sea Level , 2002 .

[6]  M. Lander,et al.  Multidecadal sea level anomalies and trends in the western tropical Pacific , 2012 .

[7]  Boudewijn Ambrosius,et al.  Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data , 2006 .

[8]  T. R. Adi,et al.  South China Sea throughflow impact on the Indonesian throughflow , 2012 .

[9]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[10]  M. England,et al.  On the Interannual Variability of the Indonesian Throughflow and Its Linkage with ENSO , 2005 .

[11]  B. Anderson,et al.  The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones , 2007 .

[12]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[13]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[14]  Matt A. King,et al.  Assessment of the Jason-1 and TOPEX/Poseidon Microwave Radiometer Performance Using GPS from Offshore Sites in the North Sea , 2004 .

[15]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[16]  Giulio Ruffini,et al.  SAR Altimeter Backscattered Waveform Model , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[18]  N. Picot,et al.  The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data , 2012 .

[19]  Bruce J. Haines,et al.  The Jason-1 Mission Special Issue: Jason-1 Calibration/Validation , 2003 .

[20]  H. Abidin,et al.  Study on the risk and impacts of land subsidence in Jakarta , 2015 .

[21]  Bertrand Chapron,et al.  New models for satellite altimeter sea state bias correction developed using global wave model data , 2006 .

[22]  Yoaz Bar-Sever,et al.  Monitoring the TOPEX Microwave Radiometer with GPS: Stability of columnar water vapor measurements , 1998 .

[23]  R. Gerdes,et al.  Classification of CryoSat-2 Radar Echoes , 2015 .

[24]  Jérôme Benveniste,et al.  Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: a coastal altimetry study in the Indonesian Seas , 2016 .

[25]  Christine Gommenginger,et al.  Retracking Altimeter Waveforms Near the Coasts , 2011 .

[26]  M. Fernandes,et al.  Impact of Altimeter Data Processing on Sea Level Studies , 2006, Sensors (Basel, Switzerland).

[27]  Rokhmin Dahuri,et al.  Pengelolaan sumber daya wilayah pesisir dan lautan secara terpadu , 2004 .

[28]  Anny Cazenave,et al.  The rate of sea-level rise , 2014 .

[29]  Stefano Vignudelli,et al.  ALES: a multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry , 2014 .

[30]  Remko Scharroo,et al.  Cross-Calibration and Long-Term Monitoring of the Microwave Radiometers of ERS, TOPEX, GFO, Jason, and Envisat , 2004 .

[31]  Stefano Vignudelli,et al.  Sea level trends in Southeast Asian seas , 2015 .

[32]  R. Nicholls Impacts of and responses to sea-level rise , 2010 .

[33]  S. Keihm,et al.  The Role of Water Vapor Radiometers for In-Flight Calibration of the TOPEX Microwave Radiometer , 1995 .

[34]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[35]  Patrick D. Nunn,et al.  Sea Level Change , 2013 .

[36]  John Derber,et al.  Changes to the 1995 NCEP Operational Medium-Range Forecast Model Analysis-Forecast System , 1997 .

[37]  Shannon T. Brown A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[38]  F. Lyard,et al.  FES 2012: A New Global Tidal Model Taking Advantage of Nearly 20 Years of Altimetry , 2013 .

[39]  Remko Scharroo,et al.  A Conceptually Simple Modeling Approach for Jason-1 Sea State Bias Correction Based on 3 Parameters Exclusively Derived from Altimetric Information , 2016, Remote. Sens..

[40]  Remko Scharroo,et al.  A global positioning system–based climatology for the total electron content in the ionosphere , 2010 .

[41]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .

[42]  Dongxiao Wang,et al.  Interplay between the Indonesian Throughflow and the South China Sea Throughflow , 2006 .

[43]  J. Hunter,et al.  Sea-level rise at tropical Pacific and Indian Ocean islands , 2006 .

[44]  M. Joana Fernandes,et al.  GPD+ Wet Tropospheric Corrections for CryoSat-2 and GFO Altimetry Missions , 2016, Remote. Sens..

[45]  J. Willis,et al.  The OSTM/Jason-2 Mission , 2010 .

[46]  Ole Baltazar Andersen,et al.  DNSC08 mean sea surface and mean dynamic topography models , 2009 .

[47]  Shailen D. Desai,et al.  Assessment of the Jason Microwave Radiometer's Measurement of Wet Tropospheric Path Delay Using Comparisons to SSM/I and TMI , 2004 .

[48]  M. A. Srokosz,et al.  Sea State Bias - 20 Years On , 2006 .

[49]  M. Joana Fernandes,et al.  GNSS-Derived Path Delay: An Approach to Compute the Wet Tropospheric Correction for Coastal Altimetry , 2010, IEEE Geoscience and Remote Sensing Letters.

[50]  M. Joana Fernandes,et al.  Analysis and Inter-Calibration of Wet Path Delay Datasets to Compute the Wet Tropospheric Correction for CryoSat-2 over Ocean , 2013, Remote. Sens..

[51]  K. Wolter,et al.  El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) , 2011 .

[52]  John C. Ries,et al.  New TOPEX sea state bias models and their effect on global mean sea level , 2003 .

[53]  C.. Desportes,et al.  On the Wet Tropospheric Correction for Altimetry in Coastal Regions , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[54]  L. Fenoglio-Marc,et al.  Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region , 2012 .

[55]  Anthony J. Mannucci,et al.  Automated daily processing of more than 1000 ground‐based GPS receivers for studying intense ionospheric storms , 2005 .

[56]  N. Schneider,et al.  Interannual variations of the Indonesian throughflow , 2007 .

[57]  Bruce J. Haines,et al.  Monitoring Measurements from the Jason-1 Microwave Radiometer and Independent Validation with GPS , 2004 .

[59]  A. Cazenave,et al.  Estimating ENSO Influence on the Global Mean Sea Level, 1993–2010 , 2012 .

[60]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[61]  P. Fang,et al.  Monitoring the TOPEX and Jason-1 Microwave Radiometers with GPS and VLBI Wet Zenith Path Delays , 2004 .

[62]  Ole Baltazar Andersen,et al.  The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry , 2015 .

[63]  M. Ablain,et al.  Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level , 2014 .

[64]  Remko Scharroo,et al.  Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination , 2011 .

[65]  P. de Chateau-Thierry,et al.  SIRAL, a high spatial resolution radar altimeter for the Cryosat mission , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[66]  C. Provost,et al.  Spectroscopy of the world ocean tides from a finite element hydrodynamic model , 1994 .

[67]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[68]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[69]  A. Cazenave,et al.  Sea-Level Rise and Its Impact on Coastal Zones , 2010, Science.

[70]  A. Gordon Oceanography of the Indonesian Seas and Their Throughflow , 2005 .

[71]  Remko Scharroo,et al.  Atmospheric Corrections for Altimetry Studies over Inland Water , 2014, Remote. Sens..