A family of lead clusters with precious metal cores

[1]  Zhong‐Ming Sun,et al.  A family of lead clusters with precious metal cores , 2020, Nature Communications.

[2]  P. Zavalij,et al.  Endohedral Plumbaspherenes of the Group 9 Metals: Synthesis, Structure and Properties of the [M@Pb12]3- (M = Co, Rh, Ir) Ions. , 2020, Chemistry.

[3]  M. Hayward,et al.  Sr2FeIrO4: Square-Planar Ir(II) in an Extended Oxide. , 2018, Inorganic chemistry.

[4]  R. Jin,et al.  Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance. , 2018, Journal of the American Chemical Society.

[5]  Zhongfang Chen,et al.  Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb12]3− , 2017 .

[6]  Hua‐Jin Zhai,et al.  An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3](3-). , 2015, Journal of the American Chemical Society.

[7]  D. Mingos Structural and bonding patterns in gold clusters. , 2015, Dalton transactions.

[8]  P. Pyykkö Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. , 2015, The journal of physical chemistry. A.

[9]  Li,et al.  Synthesis and Characterization of the Endohedral Plumbaspherene [Rh@Pb12]3- , 2015 .

[10]  Mingzhe Zhang,et al.  [Au7](3+): a missing link in the four-electron gold cluster family. , 2014, Journal of the American Chemical Society.

[11]  Yutaro Kamei,et al.  Protonation-induced chromism of pyridylethynyl-appended [core+exo]-type Au8 clusters. Resonance-coupled electronic perturbation through π-conjugated group. , 2013, Journal of the American Chemical Society.

[12]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[13]  M. Swart Spin states of (bio)inorganic systems: Successes and pitfalls , 2013 .

[14]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[15]  S. Dehnen,et al.  [Pd3Sn8Bi6]4-: a 14-vertex Sn/Bi cluster embedding a Pd3 triangle. , 2011, Journal of the American Chemical Society.

[16]  T. Krämer,et al.  A highly distorted open-shell endohedral Zintl cluster: [Mn@Pb12]3-. , 2011, Inorganic chemistry.

[17]  Yutaro Kamei,et al.  Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: octanuclear clusters with edge-sharing gold tetrahedron motifs. , 2011, Angewandte Chemie.

[18]  Britta Redlich,et al.  Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase , 2008, Science.

[19]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[20]  M. Jansen,et al.  Intercluster compounds consisting of gold clusters and fullerides: [Au7(PPh3)7]C60 x THF and [Au8(PPh3)8](C60)2. , 2008, Angewandte Chemie.

[21]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[22]  Lai‐Sheng Wang,et al.  Pd(2)@Sn(18)(4-): fusion of two endohedral stannaspherenes. , 2007, Journal of the American Chemical Society.

[23]  F. Kraus,et al.  [Au3Ge18]5- — A Gold—Germanium Cluster with Remarkable Au—Au Interactions. , 2007 .

[24]  T. Fässler,et al.  [Au3Ge18](5-)--a gold-germanium cluster with remarkable Au-Au interactions. , 2007, Angewandte Chemie.

[25]  J. Fettinger,et al.  The Pb122‐ and Pb102‐ Zintl Ions and the M@Pb122‐ and M@Pb102‐ Cluster Series Where M: Ni, Pd, Pt. , 2006 .

[26]  S. D. Hoffmann,et al.  The Zintl Ion [Pb10]2‐: A Rare Example of a Homoatomic closo Cluster. , 2006 .

[27]  J. Fettinger,et al.  The Pb12(2-) and Pb10(2-) zintl ions and the M@Pb12(2-) and M@Pb10(2-) cluster series where M = Ni, Pd, Pt. , 2006, Journal of the American Chemical Society.

[28]  T. Fässler,et al.  The Zintl Ion [Pb10]2-: a rare example of a homoatomic closo cluster. , 2006, Angewandte Chemie.

[29]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[30]  J. Goicoechea,et al.  [(Ni—Ni—Ni)@(Ge9)2]4‐: A Linear Triatomic Nickel Filament Enclosed in a Dimer of Nine‐Atom Germanium Clusters. , 2005 .

[31]  J. Goicoechea,et al.  [(Ni-Ni-Ni)@(Ge9)2]4-: a linear triatomic nickel filament enclosed in a dimer of nine-atom germanium clusters. , 2005, Angewandte Chemie.

[32]  J. Fettinger,et al.  The closo-Pb10(2-) Zintl ion in the [Ni@Pb10]2- cluster. , 2005, Chemical communications.

[33]  J. Fettinger,et al.  [Pt@Pb12]2− , 2004 .

[34]  J. Harvey,et al.  DFT computation of relative spin-state energetics of transition metal compounds , 2004 .

[35]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[36]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[37]  Tom Ziegler,et al.  An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package , 1999 .

[38]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[39]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[40]  R. Nalewajski,et al.  Two-electron valence indices from the Kohn-Sham orbitals , 1997 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[43]  A. Siedle,et al.  Synthesis and Properties of Copper and Nickel Complexes of the General Formula (B11H11)2Mn-. Crystal Structure of [(n-Bu)4N]3[Cu(B11H11)2] , 1994 .

[44]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[45]  H. Schmidbaur,et al.  Tetrahedral gold cluster [Au4]2+: crystal structure of {[(tert-Bu)3PAu]4}2+(BF4-)2.2CHCl3 , 1993 .

[46]  Tom Ziegler,et al.  The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration , 1988 .

[47]  D. Mingos,et al.  Synthesis and structural characterisation of hexakis(triphenyl phosphine)hexagold(2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edgesharing bitetrahedral geometries , 1986 .

[48]  D. Mingos Polyhedral skeletal electron pair approach , 1984 .

[49]  James W. White,et al.  Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction , 1981 .

[50]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[51]  A. Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[52]  D. Mingos Molecular-orbital calculations on cluster compounds of gold , 1976 .

[53]  J. Sneep,et al.  With a summary , 1945 .