Time-dependent effect of combination therapy with erythropoietin and granulocyte colony-stimulating factor in a mouse model of hypoxic-ischemic brain injury

[1]  A. Wagstaff,et al.  Epoetin Beta , 2012, Drugs.

[2]  G. Schlager,et al.  Systemic G-CSF treatment does not improve long-term outcomes after neonatal hypoxic–ischaemic brain injury , 2011, Experimental Neurology.

[3]  K. Kitagawa,et al.  Granulocyte Colony-Stimulating Factor Enhances Arteriogenesis and Ameliorates Cerebral Damage in a Mouse Model of Ischemic Stroke , 2011, Stroke.

[4]  S. Im,et al.  Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury , 2010, Neuroscience.

[5]  M. Digicaylioglu Erythropoietin in stroke: quo vadis , 2010, Expert opinion on biological therapy.

[6]  Shin-Da Lee,et al.  Granulocyte Colony-Stimulating Factor Activating HIF-1α Acts Synergistically with Erythropoietin to Promote Tissue Plasticity , 2010, PloS one.

[7]  H. Reichmann,et al.  Recombinant Human Erythropoietin in the Treatment of Acute Ischemic Stroke , 2009, Stroke.

[8]  J. Mallet,et al.  A Novel and Efficient Gene Transfer Strategy Reduces Glial Reactivity and Improves Neuronal Survival and Axonal Growth In Vitro , 2009, PloS one.

[9]  D. Rempe,et al.  The Janus-Faced Effects of Hypoxia on Astrocyte Function , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[10]  S. Pastorino,et al.  The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. , 2008, Blood.

[11]  M. Wendland,et al.  Erythropoietin Enhances Long-Term Neuroprotection and Neurogenesis in Neonatal Stroke , 2007, Developmental Neuroscience.

[12]  P. Bath,et al.  Colony Stimulating Factors (Blood Growth Factors) Are Promising but Unproven for Treating Stroke , 2007 .

[13]  C. Hawkins,et al.  Astrocytic-Inducible Nitric Oxide Synthase in the Ischemic Developing Human Brain , 2006, Pediatric Research.

[14]  Max Costa,et al.  Hypoxia-Inducible Factor-1 (HIF-1) , 2006, Molecular Pharmacology.

[15]  D. Maintz,et al.  Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke , 2006, Acta Neuropathologica.

[16]  S. Schwab,et al.  An extended window of opportunity for G-CSF treatment in cerebral ischemia , 2006, BMC Biology.

[17]  A. Auriat,et al.  Gauging Recovery after Hemorrhagic Stroke in Rats: Implications for Cytoprotection Studies , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  C. Noguchi,et al.  Erythropoietin and Normal Brain Development: Receptor Expression Determines Multi-Tissue Response , 2006, Neurodegenerative Diseases.

[19]  P. Schumacker,et al.  Hypoxia-inducible factor-1 (HIF-1). , 2005, Critical care medicine.

[20]  E. Lo,et al.  Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia , 2005, Brain Research.

[21]  M. Sofroniew,et al.  Reactive Astrocytes in Neural Repair and Protection , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  M. Nilsson,et al.  Astrocyte activation and reactive gliosis , 2005, Glia.

[23]  W. Jelkmann,et al.  Effects of erythropoietin on brain function. , 2005, Current pharmaceutical biotechnology.

[24]  Z. Erbayraktar,et al.  Derivatives of Erythropoietin That Are Tissue Protective But Not Erythropoietic , 2004, Science.

[25]  Ying Wang,et al.  Treatment of Stroke With Erythropoietin Enhances Neurogenesis and Angiogenesis and Improves Neurological Function in Rats , 2004, Stroke.

[26]  Haiyan Xu,et al.  New oligodendrocytes are generated after neonatal hypoxic‐ischemic brain injury in rodents , 2004, Glia.

[27]  Jerry Silver,et al.  Regeneration beyond the glial scar , 2004, Nature Reviews Neuroscience.

[28]  A. Wagstaff,et al.  Epoetin Beta: a review of its clinical use in the treatment of anaemia in patients with cancer. , 2004, Drugs.

[29]  T. Acker,et al.  Participation of Bone Marrow-Derived Cells in Long-Term Repair Processes after Experimental Stroke , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  M. Buemi,et al.  The Pleiotropic Effects of Erythropoietin in the Central Nervous System , 2003, Journal of neuropathology and experimental neurology.

[31]  R. Bordet,et al.  Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. , 2003, European journal of pharmacology.

[32]  O. Lindvall,et al.  Neuronal replacement from endogenous precursors in the adult brain after stroke , 2002, Nature Medicine.

[33]  P. Lewczuk,et al.  Erythropoietin Therapy for Acute Stroke Is Both Safe and Beneficial , 2002, Molecular medicine.

[34]  B. Williams,et al.  Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. , 2002, Experimental hematology.

[35]  S. Nilsson,et al.  Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. , 2001, Blood.

[36]  P. Lewczuk,et al.  Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P Ghezzi,et al.  Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  貞本 泰孝 Erythropoietin Prevents Place Navigation Disability and Cortical Infarction in Rats with Permanent Occlusion of the Middle Cerebral Artery , 2000 .

[39]  R. Storb,et al.  Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor , 2000, Bone Marrow Transplantation.

[40]  Clive N Svendsen,et al.  Leukocyte Infiltration, Neuronal Degeneration, and Neurite Outgrowth after Ablation of Scar-Forming, Reactive Astrocytes in Adult Transgenic Mice , 1999, Neuron.

[41]  D. Ribatti,et al.  Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo , 1999 .

[42]  A. Fattorossi,et al.  Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitor-cell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  D. Ribatti,et al.  Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. , 1999, Blood.

[44]  M. Offidani,et al.  Addition of erythropoietin to granulocyte colony-stimulating factor after priming chemotherapy enhances hemopoietic progenitor mobilization. , 1995, Bone marrow transplantation.

[45]  G. Scambia,et al.  In vitro and in vivo effects of recombinant human erythropoietin plus recombinant human G-CSF on human haemopoietic progenitor cells. , 1994, Bone marrow transplantation.

[46]  L. Sachs The molecular control of blood cell development. , 1987, Science.

[47]  A. Burgess,et al.  Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells , 1980, International journal of cancer.