Application of the Redlich-Kister expansion for estimating the density of molten fluoride psuedo-ternary salt systems of nuclear industry interest

[1]  Dennis Della Corte,et al.  Computational methods to simulate molten salt thermophysical properties , 2022, Communications Chemistry.

[2]  J. Mcmurray,et al.  Assessment of Molten Eutectic LiF-NaF-KF Density through Experimental Determination and Semiempirical Modeling , 2022, Journal of Chemical & Engineering Data.

[3]  R. Konings,et al.  Using the Quasi-chemical Formalism Beyond the Phase Diagram: Density and Viscosity Models for Molten Salt Fuel Systems , 2022, Journal of Nuclear Materials.

[4]  J. Mcmurray,et al.  Empirical estimation of densities in NaCl-KCl-UCl3 and NaCl-KCl-YCl3 molten salts using Redlich-Kister expansion , 2022, Chemical Engineering Science.

[5]  K. Sridharan,et al.  Temperature-Dependent Properties of Molten Li2BeF4 Salt Using Ab Initio Molecular Dynamics , 2021, ACS omega.

[6]  D. Kropaczek,et al.  Roadmap for thermal property measurements of Molten Salt Reactor systems , 2021 .

[7]  Duu-Jong Lee,et al.  Ab-initio molecular dynamics study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and storage , 2021 .

[8]  Dongke Sun,et al.  Interpolation and extrapolation with the CALPHAD method , 2019, Journal of Materials Science & Technology.

[9]  R. R. Romatoski,et al.  Fluoride-Salt-Cooled High-Temperature Test Reactor Thermal-Hydraulic Licensing and Uncertainty Propagation Analysis , 2019, Nuclear Technology.

[10]  Peiwen Li,et al.  Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP , 2017 .

[11]  H. Rafiee,et al.  The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15) K and P = 0.087 MPa , 2016 .

[12]  A. Tatarczuk,et al.  Densities, Excess Molar Volumes, and Thermal Expansion Coefficients of Aqueous Aminoethylethanolamine Solutions at Temperatures from 283.15 to 343.15 K , 2014, Journal of Solution Chemistry.

[13]  M. Allibert,et al.  Towards the thorium fuel cycle with molten salt fast reactors , 2014 .

[14]  S. Mirgane,et al.  Excess Molar Volumes and Viscosities for the Binary Mixtures of n-Octane, n-Decane, n-Dodecane, and n-Tetradecane with Octan-2-ol at 298.15 K , 2013 .

[15]  O. Beneš,et al.  Thermodynamic assessment of the (LiF + UF3) and (NaF + UF3) systems , 2013 .

[16]  J. Kloosterman,et al.  The Molten Salt Reactor in Generation IV: Overview and Perspectives , 2014 .

[17]  João A. P. Coutinho,et al.  Predictive methods for the estimation of thermophysical properties of ionic liquids , 2012 .

[18]  Haijun Wang,et al.  Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K , 2011 .

[19]  Gérard Picard,et al.  Molten fluorides for nuclear applications , 2010 .

[20]  C. Robelin,et al.  A Density Model for Multicomponent Liquids Based on the Modified Quasichemical Model: Application to the NaCl-KCl-MgCl2-CaCl2 System , 2007 .

[21]  Rudy J. M. Konings,et al.  Thermal and Physical Properties of Molten Fluorides for Nuclear Applications , 2007 .

[22]  R. Brissot,et al.  The thorium molten salt reactor : Moving on from the MSBR , 2005, nucl-ex/0506004.

[23]  D. T. Ingersoll,et al.  Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR) , 2004 .

[24]  H. Matsuura Short Range Structure of Molten CsCl - NaCl Mixtures Obtained by XAFS Analysis , 2004 .

[25]  T. Ogawa,et al.  High-temperature XAFS measurement of molten salt systems , 2002 .

[26]  Patrice Chartrand,et al.  Thermodynamic evaluation and optimization of the LiF-NaF-KF-MgF2-CaF2 system using the modified quasi-chemical model , 2001 .

[27]  Ursula R. Kattner,et al.  The thermodynamic modeling of multicomponent phase equilibria , 1997 .

[28]  G. Mansoori,et al.  A SIMPLE RELATION TO PREDICT OR TO CORRELATE THE EXCESS FUNCTIONS OF MULTICOMPONENT MIXTURES , 1991 .

[29]  George J. Janz,et al.  Thermodynamic and transport properties for molten salts : correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data , 1988 .

[30]  V. N. Desyatnik,et al.  Density and surface tension of melts of zirconium and hafnium fluorides with lithium fluoride , 1987 .

[31]  V. N. Desyatnik,et al.  Density and kinematic viscosity of NaF−ThF4 and KF−ThF4 melts , 1981 .

[32]  M. Hillert Empirical methods of predicting and representing thermodynamic properties of ternary solution phases , 1980 .

[33]  Y. Muggianu,et al.  Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange , 1975 .

[34]  G. L. Gardner,et al.  Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data , 1974 .

[35]  W. R. Grimes Molten-Salt Reactor Chemistry , 1970 .

[36]  C. T. Moynihan,et al.  Viscosity and Density in Molten BeF2–LiF Solutions , 1969 .

[37]  S. Cantor,et al.  Molar volumes in the LiFThF4 system , 1967 .

[38]  G. W. Mellors,et al.  The Density and Surface Tension of Molten Fluorides II . The System , 1964 .

[39]  S. I. Cohen,et al.  PHYSICAL PROPERTIES OF MOLTEN REACTOR FUELS AND COOLANTS , 1963 .

[40]  A. D. Kirshenbaum,et al.  The density of molten thorium and uranium tetrafluorides , 1961 .

[41]  R. E. Thoma,et al.  PHASE EQUILIBRIA IN THE SYSTEMS BeF2-ThF4 AND LiF-BeF2-ThF4 , 1960 .

[42]  R. E. Thoma,et al.  Phase Equilibria in the Systems NaF–ZrF4, UF4–ZrF4 and NaF–ZrF4–UF4 , 1958 .

[43]  J. Molloy,et al.  Molten salt mixtures. Part 1. Electrical conductivities, activation energies of ionic migration and molar volumes of molten binary halide mixtures , 1953 .

[44]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[45]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[46]  F. Jaeger Über die Temperaturabhängigkeit der molekularen freien Oberflächenenergie von Flüssigkeiten im Temperaturbereich von − 80 bis + 1650° C , 1917 .