Application of the Redlich-Kister expansion for estimating the density of molten fluoride psuedo-ternary salt systems of nuclear industry interest
暂无分享,去创建一个
[1] Dennis Della Corte,et al. Computational methods to simulate molten salt thermophysical properties , 2022, Communications Chemistry.
[2] J. Mcmurray,et al. Assessment of Molten Eutectic LiF-NaF-KF Density through Experimental Determination and Semiempirical Modeling , 2022, Journal of Chemical & Engineering Data.
[3] R. Konings,et al. Using the Quasi-chemical Formalism Beyond the Phase Diagram: Density and Viscosity Models for Molten Salt Fuel Systems , 2022, Journal of Nuclear Materials.
[4] J. Mcmurray,et al. Empirical estimation of densities in NaCl-KCl-UCl3 and NaCl-KCl-YCl3 molten salts using Redlich-Kister expansion , 2022, Chemical Engineering Science.
[5] K. Sridharan,et al. Temperature-Dependent Properties of Molten Li2BeF4 Salt Using Ab Initio Molecular Dynamics , 2021, ACS omega.
[6] D. Kropaczek,et al. Roadmap for thermal property measurements of Molten Salt Reactor systems , 2021 .
[7] Duu-Jong Lee,et al. Ab-initio molecular dynamics study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and storage , 2021 .
[8] Dongke Sun,et al. Interpolation and extrapolation with the CALPHAD method , 2019, Journal of Materials Science & Technology.
[9] R. R. Romatoski,et al. Fluoride-Salt-Cooled High-Temperature Test Reactor Thermal-Hydraulic Licensing and Uncertainty Propagation Analysis , 2019, Nuclear Technology.
[10] Peiwen Li,et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP , 2017 .
[11] H. Rafiee,et al. The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15) K and P = 0.087 MPa , 2016 .
[12] A. Tatarczuk,et al. Densities, Excess Molar Volumes, and Thermal Expansion Coefficients of Aqueous Aminoethylethanolamine Solutions at Temperatures from 283.15 to 343.15 K , 2014, Journal of Solution Chemistry.
[13] M. Allibert,et al. Towards the thorium fuel cycle with molten salt fast reactors , 2014 .
[14] S. Mirgane,et al. Excess Molar Volumes and Viscosities for the Binary Mixtures of n-Octane, n-Decane, n-Dodecane, and n-Tetradecane with Octan-2-ol at 298.15 K , 2013 .
[15] O. Beneš,et al. Thermodynamic assessment of the (LiF + UF3) and (NaF + UF3) systems , 2013 .
[16] J. Kloosterman,et al. The Molten Salt Reactor in Generation IV: Overview and Perspectives , 2014 .
[17] João A. P. Coutinho,et al. Predictive methods for the estimation of thermophysical properties of ionic liquids , 2012 .
[18] Haijun Wang,et al. Densities, Excess Molar Volumes, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K , 2011 .
[19] Gérard Picard,et al. Molten fluorides for nuclear applications , 2010 .
[20] C. Robelin,et al. A Density Model for Multicomponent Liquids Based on the Modified Quasichemical Model: Application to the NaCl-KCl-MgCl2-CaCl2 System , 2007 .
[21] Rudy J. M. Konings,et al. Thermal and Physical Properties of Molten Fluorides for Nuclear Applications , 2007 .
[22] R. Brissot,et al. The thorium molten salt reactor : Moving on from the MSBR , 2005, nucl-ex/0506004.
[23] D. T. Ingersoll,et al. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR) , 2004 .
[24] H. Matsuura. Short Range Structure of Molten CsCl - NaCl Mixtures Obtained by XAFS Analysis , 2004 .
[25] T. Ogawa,et al. High-temperature XAFS measurement of molten salt systems , 2002 .
[26] Patrice Chartrand,et al. Thermodynamic evaluation and optimization of the LiF-NaF-KF-MgF2-CaF2 system using the modified quasi-chemical model , 2001 .
[27] Ursula R. Kattner,et al. The thermodynamic modeling of multicomponent phase equilibria , 1997 .
[28] G. Mansoori,et al. A SIMPLE RELATION TO PREDICT OR TO CORRELATE THE EXCESS FUNCTIONS OF MULTICOMPONENT MIXTURES , 1991 .
[29] George J. Janz,et al. Thermodynamic and transport properties for molten salts : correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data , 1988 .
[30] V. N. Desyatnik,et al. Density and surface tension of melts of zirconium and hafnium fluorides with lithium fluoride , 1987 .
[31] V. N. Desyatnik,et al. Density and kinematic viscosity of NaF−ThF4 and KF−ThF4 melts , 1981 .
[32] M. Hillert. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases , 1980 .
[33] Y. Muggianu,et al. Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange , 1975 .
[34] G. L. Gardner,et al. Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data , 1974 .
[35] W. R. Grimes. Molten-Salt Reactor Chemistry , 1970 .
[36] C. T. Moynihan,et al. Viscosity and Density in Molten BeF2–LiF Solutions , 1969 .
[37] S. Cantor,et al. Molar volumes in the LiFThF4 system , 1967 .
[38] G. W. Mellors,et al. The Density and Surface Tension of Molten Fluorides II . The System , 1964 .
[39] S. I. Cohen,et al. PHYSICAL PROPERTIES OF MOLTEN REACTOR FUELS AND COOLANTS , 1963 .
[40] A. D. Kirshenbaum,et al. The density of molten thorium and uranium tetrafluorides , 1961 .
[41] R. E. Thoma,et al. PHASE EQUILIBRIA IN THE SYSTEMS BeF2-ThF4 AND LiF-BeF2-ThF4 , 1960 .
[42] R. E. Thoma,et al. Phase Equilibria in the Systems NaF–ZrF4, UF4–ZrF4 and NaF–ZrF4–UF4 , 1958 .
[43] J. Molloy,et al. Molten salt mixtures. Part 1. Electrical conductivities, activation energies of ionic migration and molar volumes of molten binary halide mixtures , 1953 .
[44] O. Redlich,et al. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .
[45] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[46] F. Jaeger. Über die Temperaturabhängigkeit der molekularen freien Oberflächenenergie von Flüssigkeiten im Temperaturbereich von − 80 bis + 1650° C , 1917 .