Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events

Current simulations of the rate at which stellar-mass compact objects merge with supermassive black holes (called extreme mass ratio in-spirals, or EMRIs) focus on two-body capture by emission of gravitational radiation. The gravitational wave signal of such events will likely involve a significant eccentricity in the sensitivity range of the Laser Interferometer Space Antenna (LISA). We show that tidal separation of stellar-mass compact object binaries by supermassive black holes will instead produce events whose eccentricity is nearly zero in the LISA band. Compared to two-body capture events, tidal separations have a high cross section and result in orbits that have a large pericenter and small apocenter. Therefore, the rate of interactions per binary is high, and the resulting systems are very unlikely to be perturbed by other stars into nearly radial plunges. Depending on the fraction of compact objects that are in binaries within a few parsecs of the center, the rate of low-eccentricity LISA events could be comparable to or larger than the rate of high-eccentricity events.

[1]  T. Alexander,et al.  The Orbital Statistics of Stellar Inspiral and Relaxation near a Massive Black Hole: Characterizing Gravitational Wave Sources , 2005, astro-ph/0503672.

[2]  E. Pfahl Binary Disruption by Massive Black Holes in Globular Clusters , 2005, astro-ph/0501326.

[3]  Michael J. Kurtz,et al.  Submitted to ApJ Letters , 1996 .

[4]  N. Ivanova,et al.  The evolution of binary fractions in globular clusters , 2005, astro-ph/0501131.

[5]  L. Ho,et al.  Dwarf Seyfert 1 Nuclei and the Low-Mass End of the MBH-σ Relation , 2004, astro-ph/0412575.

[6]  MIT,et al.  An Overabundance of Transient X-Ray Binaries within 1 Parsec of the Galactic Center , 2004, astro-ph/0412492.

[7]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[8]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[9]  L. Ho,et al.  Active Galactic Nuclei with Candidate Intermediate-Mass Black Holes , 2004, astro-ph/0404110.

[10]  A. Sa̧dowski,et al.  A Comprehensive Study of Young Black Hole Populations , 2004, astro-ph/0404068.

[11]  Clifford M. Will,et al.  On the Rate of Detectability of Intermediate-Mass Black Hole Binaries Using LISA , 2004, astro-ph/0403644.

[12]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[13]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[14]  E. Colbert,et al.  Intermediate - mass black holes , 2003, astro-ph/0308402.

[15]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[16]  A. Gould,et al.  Sagittarius A* Companion S0-2: A Probe of Very High Mass Star Formation , 2003, astro-ph/0302437.

[17]  D. Merritt,et al.  Chaotic Loss Cones, Black Hole Fueling and the M-Sigma Relation , 2003, astro-ph/0302296.

[18]  S. Hughes,et al.  Listening to the universe with gravitational-wave astronomy , 2002, astro-ph/0210481.

[19]  U. Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002, astro-ph/0204292.

[20]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[21]  P. Ivanov On the formation rate of close binaries consisting of a super‐massive black hole and a white dwarf , 2001, astro-ph/0112317.

[22]  D. Merritt,et al.  Triaxial Black Hole Nuclei , 2001, astro-ph/0111020.

[23]  K. Holley-Bockelmann,et al.  The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes , 2001, astro-ph/0111029.

[24]  M. Freitag Monte Carlo cluster simulations to determine the rate of compact star inspiralling to a central galactic black hole , 2001 .

[25]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[26]  D. Merritt,et al.  Brownian Motion of a Massive Binary , 2000, astro-ph/0012264.

[27]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[28]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[29]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[30]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[31]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[32]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[33]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[34]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[35]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[36]  F. D. Ryan,et al.  Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. , 1995, Physical review. D, Particles and fields.

[37]  P. Bender,et al.  Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .

[38]  Joseph A. Burns,et al.  Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation , 1992 .

[39]  J. Hills Computer simulations of encounters between massive black holes and binaries , 1991 .

[40]  J. Burns,et al.  Orbital stability zones about asteroids , 1991 .

[41]  Stuart Louis Shapiro,et al.  Dynamical evolution of dense clusters of compact stars , 1989 .

[42]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[43]  A. Toomre Dynamical Evolution of Globular Clusters. Lyman Spitzer, Jr. Princeton University Press, Princeton, NJ, 1988. xii, 180 pp., illus. $35; paper, $14.50. Princeton Series in Astrophysics. , 1988, Science.

[44]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[45]  P. Young Numerical models of star clusters with a central black hole. I - Adiabatic models. , 1980 .

[46]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[47]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[48]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[49]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[50]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .