A gambling interpretation of some quantum information-theoretic quantities

It is known that repeated gambling over the outcomes of independent and identically distributed (i.i.d.) random variables gives rise to alternate operational meaning of entropies in the classical case in terms of the doubling rates. We give a quantum extension of this approach for gambling over the measurement outcomes of tensor product states. Under certain parameters of the gambling setup, one can give operational meaning of von Neumann entropies. We discuss two variants of gambling when a helper is available and it is shown that the difference in their doubling rates is the quantum discord. Lastly, a quantum extension of Kelly's gambling setup in the classical case gives a doubling rate that is upper bounded by the Holevo information.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[3]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  K. Matsumoto,et al.  Quantum gambling using three nonorthogonal states , 2002 .

[6]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[7]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[8]  Elliott H. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[9]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[10]  L. Goldenberg,et al.  Quantum Gambling , 1998, quant-ph/9808001.

[11]  I. Pitowsky,et al.  Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability , 2002, quant-ph/0208121.

[12]  Robin Blume-Kohout,et al.  Accurate quantum state estimation via "Keeping the experimentalist honest" , 2006, quant-ph/0603116.

[13]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[14]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[15]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[16]  D. Ahn,et al.  Quantum Gambling Using Two Nonorthogonal States , 2000 .

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[19]  Elza Erkip,et al.  The Efficiency of Investment Information , 1998, IEEE Trans. Inf. Theory.