Synthesis, characterization and absorption saturation of Co:ZnAl2O4 (gahnite) transparent ceramic and glass-ceramics: A comparative study

Abstract Transparent polycrystalline ZnAl2O4 (gahnite) ceramic doped with 0.1 at.% Co2+ is synthesized by hot pressing of powders (1600 °C, 50 MPa) using the sintering additive, ZnF2. Structure, Raman spectra, linear and nonlinear spectroscopic properties of this material are characterized and compared to those of nanophase Co:ZnAl2O4-based transparent glass-ceramics (GCs). Co2+ ions in ZnAl2O4 ceramic exhibit absorption saturation at ∼1.54 μm (the 4A2(4F) → 4T1(4F) transition); the corresponding saturation fluence FS is 0.46 ± 0.07 J/cm2 and the saturation contrast γ = 0.15 ± 0.05. As compared to the transparent GCs, the main drawback of Co:ZnAl2O4 transparent ceramic is a low laser-induced damage threshold, which is attributed to the imperfect microstructure (the presence of pores and non-uniform grain size distribution). Providing optimization of the sintering process, the Co:ZnAl2O4 transparent ceramic looks promising for saturable absorbers of erbium lasers.

[1]  P. Tarte,et al.  Infrared studies of spinels—III. The normal II-III spinels , 1971 .

[2]  G. Boulon,et al.  Laser spectroscopy of chromium (III) in gahnite crystals and transparent gahnite-type glass-ceramics , 1986 .

[3]  G. Andreozzi,et al.  Blue spinel crystals in the MgAl2O4-CoAl2O4 series: Part I. Flux growth and chemical characterization , 2012 .

[4]  V. G. Shcherbitsky,et al.  Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4 , 1997 .

[5]  Jiangxu Li,et al.  Fabrication and spectroscopic properties of Co:MgAl 2 O 4 transparent ceramics by the HIP post-treatment , 2017 .

[6]  Konstantin V. Yumashev,et al.  Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4 , 1993 .

[7]  I. A. Denisov,et al.  Nanosized glass-ceramics doped with transition metal ions: nonlinear spectroscopy and possible laser applications , 2002 .

[8]  Ilmo Sildos,et al.  Optical properties of laser spinel , 1997, Other Conferences.

[9]  Y. Yeshurun,et al.  Fabrication of Transparent Polycrystalline ZnAl2O4 – A New Optical Bulk Ceramic , 2012 .

[10]  D. Yuan,et al.  Cation distribution in co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy. , 2011, Inorganic chemistry.

[11]  Kyeong-Hee Lee,et al.  Magnesium- and zinc-aluminosilicate cobalt-doped glass ceramics as saturable absorbers for diode-pumped 1.3-microm laser. , 2004, Applied optics.

[12]  Alexander M. Malyarevich,et al.  Formation and Passive Q-Switch Performance of Glass-Ceramics Containing Co2+-Doped Spinel Nanocrystals , 2008 .

[13]  A. Preisinger,et al.  N-lines and chromium-pairs in the luminescence spectra of the spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+ , 1977 .

[14]  Konstantin V. Yumashev,et al.  Development of Saturable Absorbers for Laser Passive Q‐Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4 , 2016 .

[15]  W. White,et al.  Interpretation of the vibrational spectra of spinels , 1967 .

[16]  A. Zhilin,et al.  Small-angle X-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System , 2005 .

[17]  A. Hofmeister,et al.  Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar , 1991 .

[18]  I. A. Denisov,et al.  Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics , 2002 .

[19]  S. Kurajica,et al.  Inverse spinel structure of Co-doped gahnite , 2009 .

[20]  P. Loiko,et al.  Influence of NiO on phase transformations and optical properties of ZnO–Al2O3–SiO2 glass-ceramics nucleated by TiO2 and ZrO2. Part I. Influence of NiO on phase transformations of ZnO–Al2O3–SiO2 glass-ceramics nucleated by TiO2 and ZrO2 , 2014 .

[21]  Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al,Ga)2O4-based glass-ceramics. , 2017, Applied optics.

[22]  F. Bosi,et al.  Color of Mn-bearing gahnite: A first example of electronic transitions in heterovalent exchange coupled IVMn2+-VIMn3+ pairs in minerals , 2014 .

[23]  R. Macfarlane,et al.  OPTICAL SPECTRUM OF CR(3+) IONS IN SPINELS, , 1968 .

[24]  Wang Xuehua,et al.  Optical properties of transparent ZnAl2O4 ceramics: A new transparent material prepared by spark plasma sintering , 2014 .

[25]  A. Navrotsky,et al.  Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution , 2004 .

[26]  A. Kozłowska,et al.  Nonlinear Absorption of Submicrometer Grain-Size Cobalt-Doped Magnesium Aluminate Transparent Ceramics , 2014 .

[27]  M. Davolos,et al.  Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method , 2008 .

[28]  V. Kisel,et al.  Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser. , 2012, Optics letters.

[29]  K. Yumashev,et al.  Anisotropy of nonlinear absorption in Co2+:MgAl2O4 crystal , 2007 .

[30]  Samvit G. Menon,et al.  Facile synthesis and luminescence studies of nanocrystalline red emitting Cr:ZnAl2O4 phosphor , 2017 .

[31]  Xavier Mateos,et al.  Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 µm , 2017 .

[32]  Richard Moncorgé,et al.  Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals , 2002 .

[33]  I. A. Denisov,et al.  Linear and nonlinear optical properties of cobalt-doped zinc aluminum glass ceramics , 2003 .

[34]  M. Čeh,et al.  Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite , 2012 .

[35]  C. Wyon,et al.  Czochralski growth and optical properties of magnesium-aluminium spinel doped with nickel , 1986 .

[36]  A. Baranov,et al.  Influence of CoO addition on phase separation and crystallization of glasses of the ZnO-Al2O3-SiO2-TiO2 system , 2011 .

[37]  V. Piacente,et al.  Torsion and Knudsen measurements of cobalt and nickel difluorides and their standard sublimation enthalpies , 1996 .

[38]  Jiangxu Li,et al.  Fabrication and spectral properties of hot-pressed Co:MgAl2O4 transparent ceramics for saturable absorber , 2017 .

[39]  V. Mohaček-Grošev,et al.  Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4 , 2017 .

[40]  T. Abritta,et al.  Luminescence study of ZnGa2O4: Co24 , 1991 .

[41]  A. Zhilin,et al.  Features of the phase transformations in titanium-containing zinc aluminosilicate glasses doped with cobalt oxide , 2013, Glass Physics and Chemistry.

[42]  Y. Sakka,et al.  Transparent ZnAl2O4 ceramics fabricated by spark plasma sintering , 2014 .

[43]  X. Mateos,et al.  Saturable absorber: transparent glass-ceramics based on a mixture of Co:β-Zn2SiO4 and Co:ZnO nanocrystals. , 2016, Applied optics.

[44]  A. Romero,et al.  Lattice dynamics of ZnAl2O4 and ZnGa2O4 under high pressure , 2011 .

[45]  P. Magusin,et al.  Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4) , 2004 .

[46]  K. Yumashev Saturable absorber Co 2+ :MgAl 2 O 4 crystal for Q switching of 1.34-µm Nd 3+ :YAlO 3 and 1.54-µm Er 3+ :glass lasers , 1999 .

[47]  A. Belyaev,et al.  A new approach to producing transparent ZnAl2O4 ceramics , 2017 .

[48]  R. M. Biefeld,et al.  The sublimation thermodynamics of zinc(II) fluoride , 1973 .

[49]  V. Pašiškevičius,et al.  Diode-Pumped Er-Yb:Glass Laser Passively Q Switched by Use of Co(2+):MgAl(2)O(4) as a Saturable Absorber. , 2000, Applied optics.

[50]  H. O’Neill,et al.  Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4 , 1994 .