An Information-Based Discussion of Borderline Cases in Categorization: Six Scenarios Leading to Vagueness

Abstract The issue of understanding and modeling vagueness was already addressed by many authors, especially in the second half of the 20th century. In this paper, we try to provide an organized discussion of different situations leading to vagueness understood in a broad sense. Indeed, they all lead to a trichotomy of the universe of discourse, via the presence of borderline cases. Basic representations frameworks are proposed for each scenario. The chapter does not advocate a particular view against others but rather identifies the characteristic features of each situation.

[1]  D. Dubois,et al.  Fuzzy sets, probability and measurement , 1989 .

[2]  Jonathan Lawry,et al.  A framework for linguistic modelling , 2004, Artif. Intell..

[3]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[4]  J. Recasens,et al.  UPPER AND LOWER APPROXIMATIONS OF FUZZY SETS , 2000 .

[5]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[6]  B. Jack Copeland,et al.  Vague identity and fuzzy logic , 1997 .

[7]  Thomas Vetterlein,et al.  Logic of prototypes and counterexamples: possibilities and limits , 2015, IFSA-EUSFLAT.

[8]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[9]  Michael Freund On the notion of concept II , 2009, Artif. Intell..

[10]  Jonathan Lawry,et al.  Probability, fuzziness and borderline cases , 2014, Int. J. Approx. Reason..

[11]  David H. Sanford USES AND ABUSES OF FUZZINESS IN PHILOSOPHY: A SELECTIVE SURVEY OF HOW RECENT PHILOSOPHICAL LOGIC AND METAPHYSICS TREAT VAGUENESS , 1995 .

[12]  P. Cheeseman Probabilistic versus Fuzzy Reasoning , 1986 .

[13]  David H. Saford Competing semantics of vagueness: Many values versus super-truth , 2004, Synthese.

[14]  G. Cohen Inferential reasoning in old age , 1981, Cognition.

[15]  Joseph Y. Halpern INTRANSITIVITY AND VAGUENESS , 2004, The Review of Symbolic Logic.

[16]  Didier Dubois,et al.  Rough Sets, Coverings and Incomplete Information , 2011, Fundam. Informaticae.

[17]  R. Deb,et al.  Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice , 1992 .

[18]  C. Peirce How to Make Our Ideas Clear , 2011, The Nature of Truth.

[19]  Lluis Godo,et al.  Logics for approximate and strong entailments , 2012, Fuzzy Sets Syst..

[20]  P. D. Finch,et al.  Characteristics of interest and fuzzy subsets , 1981, Inf. Sci..

[21]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[22]  A. Caramazza,et al.  A Fuzzy Set Approach to Modifiers and Vagueness in Natural Language , 2005 .

[23]  Carl G. Hempel,et al.  Vagueness and Logic , 1939, Philosophy of Science.

[24]  K. Fine Vagueness, truth and logic , 1975, Synthese.

[25]  Kenton F. Machina,et al.  Truth, belief, and vagueness , 1976, J. Philos. Log..

[26]  Kaoru Hirota,et al.  Concepts of probabilistic sets , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[27]  Roy Sorensen,et al.  Vagueness and Contradiction , 2001 .

[28]  David H. Sanford Nostalgia for the ordinary: Comments on papers by Unger and Wheeler , 2004, Synthese.

[29]  I. Turksen,et al.  Measurement of Membership Functions: Theoretical and Empirical Work , 2000 .

[30]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[31]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..

[32]  Petr Cintula,et al.  Understanding Vagueness. Logical, Philosophical and Linguistic Perspectives , 2011 .

[33]  M. Black Vagueness. An Exercise in Logical Analysis , 1937, Philosophy of Science.

[34]  F. H. Bradley,et al.  Essays on Truth and Reality , 1914 .

[35]  John W. T. Lee Ordinal decomposability and fuzzy connectives , 2003, Fuzzy Sets Syst..

[36]  Paul Kay,et al.  Color Categories as Fuzzy Sets. Working Papers of the Language Behavior Research Laboratory. No. 44. , 1975 .

[37]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[38]  E. Hisdal Are grades of membership probabilities , 1988 .

[39]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[40]  L. A. Zadeh,et al.  A note on prototype theory and fuzzy sets , 1982, Cognition.

[41]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[42]  Daniel S. Yeung,et al.  Ordinal fuzzy sets , 2002, IEEE Trans. Fuzzy Syst..

[43]  Edward E. Smith,et al.  On the adequacy of prototype theory as a theory of concepts , 1981, Cognition.

[44]  Thierry Marchant,et al.  The measurement of membership by comparisons , 2004, Fuzzy Sets Syst..

[45]  Romano Scozzafava,et al.  Conditional probability, fuzzy sets, and possibility: a unifying view , 2004, Fuzzy Sets Syst..

[46]  Lotfi A. Zadeh,et al.  PRUF—a meaning representation language for natural languages , 1978 .

[47]  D. Dubois,et al.  Twofold fuzzy sets and rough sets—Some issues in knowledge representation , 1987 .

[48]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[49]  Rade,et al.  Handling Borderline Cases Using Degrees : An Information Processing Perspective , 2012 .

[50]  A. Caramazza,et al.  A fuzzy set approach to modifiers and vagueness in natural language. , 1976 .

[51]  Rohit Parikh The Problem of Vague Predicates , 1983 .

[52]  Charles Elkan,et al.  The paradoxical success of fuzzy logic , 1993, IEEE Expert.

[53]  C. A. Català A reflection on what is a membership function , 1999 .

[54]  Rosanna Keefe,et al.  Vagueness by numbers , 1998 .

[55]  R. Giles The concept of grade of membership , 1988 .

[56]  Susan L. Epstein Representation and Reasoning for Pragmatic Navigation , 1997 .

[57]  Didier Dubois,et al.  Modeling uncertain and vague knowledge in possibility and evidence theories , 2013, UAI.

[58]  Michael Freund,et al.  On the notion of concept I , 2008, Artif. Intell..

[59]  Ivor Grattan-Guinness,et al.  Fuzzy Membership Mapped onto Intervals and Many-Valued Quantities , 1976, Math. Log. Q..

[60]  B. R. Gainfs Foundations of fuzzy reasoning , 1976 .

[61]  L. Valverde,et al.  On Some Logical Connectives for Fuzzy Sets Theory , 1983 .

[62]  Henri Prade,et al.  A logical approach to interpolation based on similarity relations , 1997, Int. J. Approx. Reason..

[63]  Thomas S. Weston,et al.  Approximate truth , 1987, J. Philos. Log..

[64]  A. L. PRUF a meaning representation language for natural languages , 2008 .