Experimental and Analytical Analysis of Macro-Scale Molecular Communications Within Closed Boundaries

Molecular communication (MC) is an emerging field where the transmission of information occurs using particles (i.e., molecules, pheromones) instead of electromagnetic (EM) waves. This change in propagation medium opens up new possibilities for MC in areas where EM is inefficient or impossible such as underwater and underground communications. This study reports transmission experiments conducted to analyze the propagation behaviour in a closed boundary. It is shown that the behaviour can be explained by using the advection-diffusion equation (ADE) where the diffusion parameter of the equation plays a pivotal role in the process of the propagation. The signal properties of the transmission are analyzed and modelled theoretically and it is shown that the communication exhibits complex behaviour for signal amplitude, signal energy and signal-to-noise ratio with respect to transmission distance.

[1]  Milica Stojanovic,et al.  Acoustic (Underwater) Communications , 2003 .

[2]  J. Gardner,et al.  Biomimetic insect infochemical communication system , 2009, 2009 IEEE Sensors.

[3]  Kwang-Cheng Chen,et al.  On the asynchronous information embedding for event-driven systems in molecular communications , 2013, Nano Commun. Networks.

[4]  Robert L. Baldwin,et al.  Flow Equations and Frames of Reference for Isothermal Diffusion in Liquids , 1960 .

[5]  Boris Brkić,et al.  Chemical Sniffing Instrumentation for Security Applications. , 2016, Chemical reviews.

[6]  Alan Marshall,et al.  Modulation Analysis in Macro-Molecular Communications , 2019, IEEE Access.

[7]  Alan Marshall,et al.  Experimental Results on the Open-Air Transmission of Macro-Molecular Communication Using Membrane Inlet Mass Spectrometry , 2018, IEEE Communications Letters.

[8]  Ian F. Akyildiz,et al.  Underground Wireless Communication Using Magnetic Induction , 2009, 2009 IEEE International Conference on Communications.

[9]  Nariman Farsad,et al.  Molecular Versus Electromagnetic Wave Propagation Loss in Macro-Scale Environments , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[10]  M Statheropoulos,et al.  Dynamic vapor generator that simulates transient odor emissions of victims entrapped in the voids of collapsed buildings. , 2014, Analytical chemistry.

[11]  Shengli Zhou,et al.  Prospects and Problems of Wireless Communication for Underwater Sensor , 2008 .

[12]  Mohsen Sardari,et al.  Capacity of discrete molecular diffusion channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[13]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[14]  Dogu Arifler,et al.  Capacity analysis of a diffusion-based short-range molecular nano-communication channel , 2011, Comput. Networks.

[15]  Özgür B. Akan,et al.  Deterministic capacity of information flow in molecular nanonetworks , 2010, Nano Commun. Networks.

[16]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[17]  Ian F. Akyildiz,et al.  Wireless underground sensor networks: Research challenges , 2006, Ad Hoc Networks.

[18]  Thomas F. Stocker,et al.  Introduction to Climate Modelling , 2011 .

[19]  Massimiliano Pierobon,et al.  Noise Analysis in Ligand-Binding Reception for Molecular Communication in Nanonetworks , 2011, IEEE Transactions on Signal Processing.

[20]  Ian F. Akyildiz,et al.  Modulation Techniques for Communication via Diffusion in Nanonetworks , 2011, 2011 IEEE International Conference on Communications (ICC).

[21]  Boris Brkić,et al.  Analysis of chlorinated hydrocarbons in gas phase using a portable membrane inlet mass spectrometer , 2016 .

[22]  W. Agosta Chemical Communication: The Language of Pheromones , 1992 .

[23]  Mark L. Winston,et al.  Pheromone Communication in the Honeybee (Apis mellifera L.) , 2005, Journal of Chemical Ecology.

[24]  Zhou Shengli,et al.  Prospects and problems of wireless communication for underwater sensor networks , 2008 .

[25]  Hui Li,et al.  Capacity of the Memoryless Additive Inverse Gaussian Noise Channel , 2014, IEEE Journal on Selected Areas in Communications.

[26]  Alan Marshall,et al.  Parameter Analysis in Macro-Scale Molecular Communications Using Advection-Diffusion , 2018, IEEE Access.

[27]  Chan-Byoung Chae,et al.  Novel Modulation Techniques using Isomers as Messenger Molecules for Nano Communication Networks via Diffusion , 2012, IEEE Journal on Selected Areas in Communications.

[28]  Andrew W. Eckford,et al.  Tabletop Molecular Communication: Text Messages through Chemical Signals , 2013, PloS one.

[29]  Alan Marshall,et al.  Molecular-Based Nano-Communication Network: A Ring Topology Nano-Bots for In-Vivo Drug Delivery Systems , 2019, IEEE Access.

[30]  Stamatios Giannoukos,et al.  Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry , 2017, Journal of The American Society for Mass Spectrometry.

[31]  M. Winston,et al.  Pheromone Communication in Social Insects , 1997 .

[32]  R. Andrew Russell,et al.  Odour Detection by Mobile Robots , 1999, World Scientific Series in Robotics and Intelligent Systems.

[33]  Baris Atakan Optimal Transmission Probability in Binary Molecular Communication , 2013, IEEE Communications Letters.

[34]  R. A. Russell,et al.  An odour sensing robot draws inspiration from the insect world , 1998, Proceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No.98TH8269).

[35]  Vahid Jamali,et al.  Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications , 2018, IEEE Transactions on NanoBioscience.

[36]  Massimiliano Pierobon,et al.  Diffusion-Based Noise Analysis for Molecular Communication in Nanonetworks , 2011, IEEE Transactions on Signal Processing.

[37]  Sebastian Magierowski,et al.  Nano-machine molecular communication over a moving propagation medium , 2013, Nano Commun. Networks.

[38]  Mohsen Sardari,et al.  Capacity of diffusion-based molecular communication with ligand receptors , 2011, 2011 IEEE Information Theory Workshop.

[39]  Ian F. Akyildiz,et al.  Interference effects on modulation techniques in diffusion based nanonetworks , 2012, Nano Commun. Networks.

[40]  Stamatios Giannoukos,et al.  A Chemical Alphabet for Macromolecular Communications. , 2018, Analytical chemistry.

[41]  Boris Brkić,et al.  Membrane inlet mass spectrometry for in situ environmental monitoring , 2014 .

[42]  US Forest,et al.  The Plant Vascular System: Evolution, Development and Functions , 2013 .

[43]  Boris Brkić,et al.  Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications , 2015, Journal of The American Society for Mass Spectrometry.

[44]  Boris Brkić,et al.  Monitoring of human chemical signatures using membrane inlet mass spectrometry. , 2014, Analytical chemistry.

[45]  Á. Guerrero,et al.  Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor , 2012, PloS one.

[46]  Marina Cole,et al.  Towards a biosynthetic infochemical communication system , 2009 .

[47]  Raimo A. Ketola,et al.  Membrane Inlet Mass Spectrometry (MIMS) in historical perspective , 2016 .

[48]  Tadashi Nakano,et al.  Channel Model and Capacity Analysis of Molecular Communication with Brownian Motion , 2012, IEEE Communications Letters.

[49]  Stephen Taylor,et al.  Asymmetrical inter-symbol interference in macro-scale molecular communications , 2018, NANOCOM.

[50]  R. Cotter,et al.  Mass Spectrometry , 1992, Bio/Technology.

[51]  Massimiliano Pierobon,et al.  Diffusion-based physical channel identification in molecular nanonetworks , 2011, Nano Commun. Networks.

[52]  Robert J. Linhardt,et al.  Role of Glycosaminoglycans in Cellular Communication , 2004 .

[53]  H. T. Mouftah,et al.  On the characterization of binary concentration-encoded molecular communication in nanonetworks , 2010, Nano Commun. Networks.

[54]  Sima Noghanian,et al.  A Survey of Wireless Communications and Propagation Modeling in Underground Mines , 2013, IEEE Communications Surveys & Tutorials.

[55]  Raghupathy Sivakumar,et al.  Time-Elapse Communication: Bacterial Communication on a Microfluidic Chip , 2013, IEEE Transactions on Communications.

[56]  W. Loewenstein,et al.  On the genesis of cellular communication. , 1967, Developmental biology.