Double-diamond high-contrast-gratings vertical external cavity surface emitting laser

A new design of vertical external cavity surface emitting laser (VECSEL) with diamond-based high contrast gratings is proposed. The self-consistent model of laser operation has been calibrated based on experimental results and used to optimize the new proposed device and to perform comparative thermal and optical analysis of conventional and double-diamond high-contrast-grating VECSELs. The proposed design considerably reduces the dimensions and complexity of the device and provides up to 80% increase of the maximum emitted power as compared with the conventional design.

[1]  S. Calvez,et al.  Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating , 2006, IEEE Photonics Technology Letters.

[2]  Rafael Santschi,et al.  Investigation of optical far-field stability in long-wavelength VCSELs: thermal and carrier-induced effects , 2007, SPIE OPTO.

[3]  Wei,et al.  Thermal diffusivity of isotopically enriched 12C diamond. , 1990, Physical review. B, Condensed matter.

[4]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[5]  A. Mooradian,et al.  Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1999 .

[6]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[7]  Sadao Adachi,et al.  Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y , 1989 .

[8]  E. Kapon,et al.  8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[9]  K. Panajotov,et al.  PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures. , 2005, Optics express.

[10]  A. Allerman,et al.  High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser , 2002 .

[11]  Joachim Piprek,et al.  What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? , 2002 .

[12]  M. S. Millán Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter , 2012 .

[13]  I. Sagnes,et al.  Thermal Management for High-Power Single-Frequency Tunable Diode-Pumped VECSEL Emitting in the Near- and Mid-IR , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  S. Koch,et al.  Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers , 2009 .

[15]  Joachim Piprek,et al.  Design and optimization of high-performance 1.3-μm VCSELs , 2004, SPIE OPTO.

[16]  J. Hopkins,et al.  High‐brightness long‐wavelength semiconductor disk lasers , 2008 .

[17]  K. Iga,et al.  Semiconductor Lasers in Photonics , 2008, Journal of Lightwave Technology.

[18]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[19]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[20]  Alexei Sirbu,et al.  2.6 W optically-pumped semiconductor disk laser operating at 1.57-microm using wafer fusion. , 2008, Optics express.

[21]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[22]  Armis R. Zakharian,et al.  Experimental and theoretical analysis of optically pumped semiconductor disk lasers , 2003 .

[23]  M. Pessa,et al.  Simultaneous Dual-Wavelength Emission From Vertical External-Cavity Surface-Emitting Laser: A Numerical Modeling , 2006, IEEE Journal of Quantum Electronics.

[24]  J. Geske,et al.  Vertical-cavity surface-emitting laser active regions for enhanced performance with optical pumping , 2004, IEEE Journal of Quantum Electronics.

[25]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[26]  Kent D. Choquette,et al.  Modal frequencies of vertical-cavity lasers determined by an effective-index model , 2000 .

[27]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[28]  Ye Zhou,et al.  Size effect of high contrast gratings in VCSELs. , 2009, Optics express.

[29]  Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers , 2010 .

[30]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[31]  Tomasz Czyszanowski,et al.  Wafer-Fused Optically Pumped VECSELs Emitting in the 1310-nm and 1550-nm Wavebands , 2011 .

[32]  J. Hader,et al.  VECSEL threshold and output power-shutoff dependence on the carrier recombination rates , 2005, IEEE Photonics Technology Letters.

[33]  Oleg G. Okhotnikov,et al.  Semiconductor Disk Lasers: Physics and Technology , 2010 .

[34]  Jerome K. Butler,et al.  Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers , 2001 .

[35]  N. Peyghambarian,et al.  High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers , 2006, IEEE Photonics Technology Letters.

[36]  E. Riis,et al.  0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser , 2003, IEEE Photonics Technology Letters.

[37]  R. Sladek THERMAL CONDUCTIVITY OF INDIUM-THALLIUM ALLOYS AT LOW TEMPERATURES , 1955 .

[38]  Tomasz Czyszanowski,et al.  Simulation of 1550-nm diamond VECSEL with high contrast grating , 2012, Photonics Europe.

[39]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[40]  R. Michalzik,et al.  Semiconductor Lasers and Laser Dynamics III , 2008 .