Comparison of PEGylated and non-PEGylated proticles: An in vitro and in vivo study.

[1]  A. Zimmer,et al.  A Protocol To Characterize Peptide-Based Drug Delivery Systems for miRNAs , 2019, ACS omega.

[2]  M. R. Mozafari,et al.  Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems , 2018, Pharmaceutics.

[3]  Y. Byun,et al.  Self-assembled nanocomplex of PEGylated protamine and heparin-suramin conjugate for accumulation at the tumor site. , 2018, International journal of pharmaceutics.

[4]  Krishna N. Kumar,et al.  Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. , 2017, The Journal of the Acoustical Society of America.

[5]  anastasia. khvorova,et al.  The chemical evolution of oligonucleotide therapies of clinical utility , 2017, Nature Biotechnology.

[6]  Christopher Cawthorne,et al.  Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[7]  Sourav Bhattacharjee,et al.  DLS and zeta potential - What they are and what they are not? , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[8]  Laura M Ensign,et al.  PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. , 2016, Advanced drug delivery reviews.

[9]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[10]  A. Zimmer,et al.  Protamine-oligonucleotide-nanoparticles: Recent advances in drug delivery and drug targeting. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[11]  Yavuz Gokce,et al.  Ultrasonication of chitosan nanoparticle suspension: Influence on particle size , 2014 .

[12]  J. Kjems,et al.  Optimized siRNA-PEG Conjugates for Extended Blood Circulation and Reduced Urine Excretion in Mice , 2013, Theranostics.

[13]  R. Prassl,et al.  Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: a comparison using different radiometals , 2010, Journal of liposome research.

[14]  T. Park,et al.  Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[15]  Shelton D Caruthers,et al.  Nanotechnological applications in medicine. , 2007, Current opinion in biotechnology.

[16]  A. Zimmer,et al.  Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  A. Zimmer,et al.  Comparison of antisense oligonucleotide drug delivery systems. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[18]  A. Zimmer,et al.  Physicochemical characterization of protamine-phosphorothioate nanoparticles , 2004, Journal of microencapsulation.

[19]  Hagen von Briesen,et al.  Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[20]  Y. Shoji,et al.  Current status of delivery systems to improve target efficacy of oligonucleotides. , 2004, Current pharmaceutical design.

[21]  V. Labhasetwar,et al.  Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. , 2002, International journal of pharmaceutics.

[22]  K. Kataoka,et al.  Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[23]  A. Zimmer,et al.  Phosphodiester and phosphorothioate oligonucleotide condensation and preparation of antisense nanoparticles. , 2001, Biochimica et biophysica acta.

[24]  A. Zimmer,et al.  Antisense delivery using protamine-oligonucleotide particles. , 2000, Nucleic acids research.

[25]  J. S. Cohen Designing antisense oligonucleotides as pharmaceutical agents. , 1989, Trends in pharmacological sciences.

[26]  P. Beaumier,et al.  Effect of liposome dose on the elimination of small unilamellar sphingomyelin/cholesterol vesicles from the circulation. , 1983, Research communications in chemical pathology and pharmacology.

[27]  M. Stephenson,et al.  Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[28]  F. Miescher Das Protamin, eine neue organische Base aus den Samenfäden des Rheinlachses , 1874 .