Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Africa

[1]  D. Ward,et al.  Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia , 1996 .

[2]  S. Freitas,et al.  Monitoring the transport of biomass burning emission in South America , 2011 .

[3]  Jonas Ardö,et al.  Evaluation of MODIS gross primary productivity for Africa using eddy covariance data , 2013 .

[4]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[5]  M. Roman,et al.  Surface albedo darkening from wildfires in northern sub-Saharan Africa , 2012 .

[6]  Konrad J. Wessels,et al.  Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa , 2014, Remote. Sens..

[7]  F. Siegert,et al.  Biomass burning fuel consumption rates: a field measurement database , 2014 .

[8]  Bernardo Mota,et al.  A New Top-Down Approach for Directly Estimating Biomass Burning Emissions and Fuel Consumption Rates and Totals from Geostationary Satellite Fire Radiative Power (FRP) , 2018 .

[9]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[10]  Navashni Govender,et al.  The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa , 2006 .

[11]  G. Roberts,et al.  Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory , 2011 .

[12]  D. Roy,et al.  Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite‐based active fire characterization and biomass burning estimation , 2014 .

[13]  D. Roy,et al.  An active-fire based burned area mapping algorithm for the MODIS sensor , 2009 .

[14]  O. P. Dube Challenges of wildland fire management in Botswana: Towards a community inclusive fire management approach , 2013 .

[15]  João M. N. Silva,et al.  Estimation of combustion completeness based on fire‐induced spectral reflectance changes in a dambo grassland (Western Province, Zambia) , 2005 .

[16]  C. Justice,et al.  SAFARI-2000 characterization of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia , 2003 .

[17]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[18]  Y. Govaerts,et al.  LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis , 2015 .

[19]  C. Justice,et al.  Potential global fire monitoring from EOS‐MODIS , 1998 .

[20]  E. Vermote,et al.  Estimating biomass consumed from fire using MODIS FRE , 2009 .

[21]  Shobha Kondragunta,et al.  Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product , 2008 .

[22]  R. Bradstock,et al.  Defining pyromes and global syndromes of fire regimes , 2013, Proceedings of the National Academy of Sciences.

[23]  S. L. J. Oliveira,et al.  Seasonal differences in fire activity and intensity in tropical savannas of northern Australia using satellite measurements of fire radiative power , 2015 .

[24]  Martin J. Wooster,et al.  Experimental confirmation of the MWIR and LWIR grey body assumption for vegetation fire flame emissivity , 2014 .

[25]  C. Justice,et al.  Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems , 1996 .

[26]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[27]  Matthew B. Dickinson,et al.  Radiant flux density, energy density and fuel consumption in mixed-oak forest surface fires , 2012 .

[28]  S. W. Maier,et al.  Direct measurements of the seasonality of emission factors from savanna fires in northern Australia , 2012 .

[29]  M. Wooster,et al.  Boreal forest fires burn less intensely in Russia than in North America , 2004 .

[30]  S. Stehman,et al.  Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation , 2015 .

[31]  Christopher A Williams,et al.  Africa and the global carbon cycle , 2007, Carbon balance and management.

[32]  G. Roberts,et al.  Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004) , 2006 .

[33]  Gareth Roberts,et al.  Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation , 2014 .

[34]  D. Roy,et al.  Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States , 2018 .

[35]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[36]  Johannes W. Kaiser,et al.  Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite , 2016 .

[37]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[38]  R. Fensholt,et al.  Evaluation of satellite based primary production modelling in the semi-arid Sahel , 2006 .

[39]  Y. Kaufman,et al.  Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release , 2005 .

[40]  Gareth Roberts,et al.  Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[41]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[42]  W. Hao,et al.  Seasonality of carbon emissions from biomass burning in a Zambian savanna , 1999 .

[43]  M. Wooster,et al.  Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI , 2017 .

[44]  M. Wooster,et al.  Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China , 2017 .

[45]  D. Roy,et al.  Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product , 2010 .

[46]  Gareth Roberts,et al.  An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power , 2009 .

[47]  Gareth Roberts,et al.  Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product , 2014, Remote. Sens..

[48]  F. Gonzalez-Alonso,et al.  Impact of point spread function of MSG-SEVIRI on active fire detection , 2009 .

[49]  John R. G. Townshend,et al.  Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction , 1994 .

[50]  Update for combustion properties of wood components , 2002 .

[51]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[52]  Vivek K. Arora,et al.  Fire as an interactive component of dynamic vegetation models , 2005 .

[53]  Dario Papale,et al.  A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities , 2014 .

[54]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[55]  B. W. Webb,et al.  Measurements of convective and radiative heating in wildland fires , 2013 .

[56]  Christopher C. Schmidt,et al.  Near-Real-Time Global Biomass Burning Emissions Product from Geostationary Satellite Constellation , 2012 .

[57]  J. Morcrette,et al.  LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS) , 2015 .

[58]  William D. Holley,et al.  Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors – RxCADRE 2012 , 2016 .

[59]  D. Roy,et al.  The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product , 2008 .

[60]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[61]  Mingguo Ma,et al.  Validation of MODIS-GPP product at 10 flux sites in northern China , 2013 .

[62]  C. Justice,et al.  Seasonal variation and ecosystem dependence of emission factors for selected trace gases and PM2.5 for southern African savanna fires , 2003 .

[63]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[64]  G. Roberts,et al.  New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America , 2010 .

[65]  G. V. D. Werf,et al.  Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition , 2014 .

[66]  Donny M. A. Aminou,et al.  Characteristics of the Meteosat Second Generation (MSG) radiometer/imager: SEVIRI , 1997, Remote Sensing.

[67]  G. Roberts,et al.  Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa , 2011 .

[68]  Jonas Ardö,et al.  Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems , 2011 .

[69]  A. Hudak,et al.  Laboratory experiments to estimate interception of infrared radiation by tree canopies , 2016 .

[70]  J. Gastellu-Etchegorry,et al.  Investigating the impact of overlying vegetation canopy structures on fire radiative power (FRP) retrieval through simulation and measurement , 2018, Remote Sensing of Environment.

[71]  P. Ciais,et al.  Variability and recent trends in the African carbon balance , 2008 .

[72]  D. E. Hall,et al.  Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data , 2014 .

[73]  Aaron M. Sparks,et al.  Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals , 2013 .

[74]  D. Roy,et al.  Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data , 2005 .

[75]  M. Wooster,et al.  Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. , 2003 .

[76]  W. Hao,et al.  Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems , 1996 .

[77]  Casey M. Ryan,et al.  Above‐ and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique , 2011 .

[78]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[79]  C. Justice,et al.  The collection 6 MODIS active fire detection algorithm and fire products , 2016, Remote sensing of environment.

[80]  Martin J. Wooster,et al.  A Decade Long, Multi-Scale Map Comparison of Fire Regime Parameters Derived from Three Publically Available Satellite-Based Fire Products: A Case Study in the Central African Republic , 2014, Remote. Sens..

[81]  G. Roberts,et al.  Annual and diurnal african biomass burning temporal dynamics , 2008 .

[82]  C. Justice,et al.  Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results , 2014 .