Testing Interface Thermal Resistance

The paper presents some recent trends in TIM material development, and outlines the state of the art in testing interface thermal resistance values. After presenting the trends in TIM material development first the available experimental techniques are presented shortly, and then the currently available industrial methods are discussed with more details. The paper finally presents some promising developments in finding better resolution high throughput methods to solve the challenging problem of measuring very small thermal resistance values in electronics applications.

[1]  Masud Behnia,et al.  Systematic evaluation of thermal interface materials - a case study in high power amplifier design , 2005, Microelectron. Reliab..

[2]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[3]  Don Kearns,et al.  Improving accuracy and flexibility of ASTM D 5470 for high performance thermal interface materials , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[4]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[5]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[6]  M. Rencz,et al.  Die attach quality control of 3D stacked dies , 2004, IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium (IEEE Cat. No.04CH37585).

[7]  V. Szekely,et al.  Identification of RC networks by deconvolution: chances and limits , 1998 .

[8]  Shoushan Fan,et al.  Thermal conductivity improvement of silicone elastomer with carbon nanotube loading , 2004 .

[9]  Performance analysis of the transient thermo-reflectance method for measuring the thermal conductivity of single layer materials , 2004 .

[10]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[11]  M. Rencz,et al.  Increasing the accuracy of structure function based thermal material parameter measurements , 2005, IEEE Transactions on Components and Packaging Technologies.

[12]  C.J.M. Lasance,et al.  Challenges in thermal interface material testing , 2006, Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium.

[13]  J. R. Culham,et al.  Design, assembly and commissioning of a test apparatus for characterizing thermal interface materials , 2002, ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258).

[14]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[15]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[16]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[17]  Marta Rencz,et al.  Measuring partial thermal resistances in a heat-flow path , 2002 .

[18]  Andras Poppe,et al.  A Scalable Multi-Functional Thermal Test Chip Family: Design and Evaluation , 2001 .

[19]  G. L. Solbrekken,et al.  The development of a tool to predict package level thermal interface material performance , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[20]  M. Rencz,et al.  Short time die attach characterization of leds for in-line testing application , 2006, 2006 8th Electronics Packaging Technology Conference.

[21]  A. Majumdar,et al.  Reexamining the 3-omega technique for thin film thermal characterization , 2006 .