A Pure Combinational Logic Gate Based Forward Converter for New Five Moduli Set RNS
暂无分享,去创建一个
[1] Chip-Hong Chang,et al. Efficient reverse converters for four-moduli sets { 2n−1, 2n, 2n+1, 2n+1−1} and {2n−1, 2n, 2n+1, 2n−1−1} , 2005 .
[2] Richard Conway,et al. Improved RNS FIR filter architectures , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.
[3] Michael A. Soderstrand,et al. Residue number system arithmetic: modern applications in digital signal processing , 1986 .
[4] S. Andraos,et al. A new efficient memoryless residue to binary converter , 1988 .
[5] Chip-Hong Chang,et al. An efficient reverse converter for the 4-moduli set {2/sup n/ - 1, 2/sup n/, 2/sup n/ + 1, 2/sup 2n/ + 1} based on the new Chinese remainder theorem , 2003 .
[6] Richard I. Tanaka,et al. Residue arithmetic and its applications to computer technology , 1967 .
[7] A. Benjamin Premkumar,et al. A Memoryless Reverse Converter for the 4-Moduli Superset {2n-1, 2n, 2n+1, 2n+1-1} , 2000, J. Circuits Syst. Comput..
[8] F. J. Taylor,et al. Residue Arithmetic A Tutorial with Examples , 1984, Computer.
[9] Ahmad A. Hiasat,et al. High-Speed and Reduced-Area Modular Adder Structures for RNS , 2002, IEEE Trans. Computers.
[10] Alexander Skavantzos,et al. Implementation issues of the two-level residue number system with pairs of conjugate moduli , 1999, IEEE Trans. Signal Process..
[11] Samir Palnitkar,et al. Verilog HDL: a guide to digital design and synthesis , 1996 .
[12] T. Stouraitis,et al. Full adder-based arithmetic units for finite integer rings , 1993 .
[13] T. Srikanthan,et al. Fast residue-to-binary converter architectures , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).
[14] Thanos Stouraitis,et al. Grouped-moduli residue number systems for fast signal processing , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).
[15] A. Hiasat. Efficient residue to binary converter , 2003 .
[16] Monjul Saikia,et al. Implementation of ElGamal Elliptic Curve Cryptography over prime field using C , 2014, International Conference on Information Communication and Embedded Systems (ICICES2014).
[17] P. V. Ananda Mohan. Efficient Design of Binary to RNS Converters , 1999, J. Circuits Syst. Comput..
[18] Alexander Skavantzos,et al. New Multipliers Modulo 2^N - 1 , 1992, IEEE Trans. Computers.
[19] Costas Efstathiou,et al. Area-time efficient modulo 2/sup n/-1 adder design , 1994 .
[20] Alexander Skavantzos,et al. An efficient residue to weighted converter for a new residue number system , 1998, Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222).
[21] Thambipillai Srikanthan,et al. A reverse converter for the 4-moduli superset {2/sup n/-1, 2/sup n/, 2/sup n/+1, 2/sup n+1/+1} , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[22] Yutai Ma. A Slimplified Architecture for Modulo (2n + 1) Multiplication , 1998, IEEE Trans. Computers.
[23] Haridimos T. Vergos,et al. Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.
[24] Hubert Kaeslin,et al. Regular VLSI architectures for multiplication modulo (2/sup n/+1) , 1991 .
[25] Haridimos T. Vergos,et al. Fast parallel-prefix modulo 2/sup n/+1 adders , 2004, IEEE Transactions on Computers.