Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides.

Two-dimensional (2D) semiconductors, such as ultrathin layers of transition metal dichalcogenides (TMDs), offer a unique combination of electronic, optical and mechanical properties, and hold potential to enable a host of new device applications spanning from flexible/wearable (opto)electronics to energy-harvesting and sensing technologies. A critical requirement for developing practical and reliable electronic devices based on semiconducting TMDs consists in achieving a full control over their charge-carrier polarity and doping. Inconveniently, such a challenging task cannot be accomplished by means of well-established doping techniques (e.g. ion implantation and diffusion), which unavoidably damage the 2D crystals resulting in degraded device performances. Nowadays, a number of alternatives are being investigated, including various (supra)molecular chemistry approaches relying on the combination of 2D semiconductors with electroactive donor/acceptor molecules. As yet, a large variety of molecular systems have been utilized for functionalizing 2D TMDs via both covalent and non-covalent interactions. Such research endeavours enabled not only the tuning of the charge-carrier doping but also the engineering of the optical, electronic, magnetic, thermal and sensing properties of semiconducting TMDs for specific device applications. Here, we will review the most enlightening recent advancements in experimental (supra)molecular chemistry methods for tailoring the properties of atomically-thin TMDs - in the form of substrate-supported or solution-dispersed nanosheets - and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and devices based on 2D semiconductors and molecular systems.

[1]  Wenguang,et al.  Electron , 2020, Definitions.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  Andreas Hirsch,et al.  Post‐Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization , 2018, Angewandte Chemie.

[5]  Quan Li,et al.  Photochromism into nanosystems: towards lighting up the future nanoworld. , 2018, Chemical Society reviews.

[6]  J. Coleman,et al.  RuII Photosensitizer-Functionalized Two-Dimensional MoS2 for Light-Driven Hydrogen Evolution. , 2018, Chemistry.

[7]  Yiming Li,et al.  Impact of Doping Concentration on Electronic Properties of Transition Metal-Doped Monolayer Molybdenum Disulfide , 2018, IEEE Transactions on Electron Devices.

[8]  Libai Huang,et al.  Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures , 2018, Science Advances.

[9]  D. Duong,et al.  van der Waals Layered Materials: Opportunities and Challenges. , 2017, ACS Nano.

[10]  M. S. Jeong,et al.  Highly Efficient Thin-Film Transistor via Cross-Linking of 1T Edge Functional 2H Molybdenum Disulfides. , 2017, ACS nano.

[11]  O. Yazyev,et al.  Point defects in the 1$T'$ and 2$H$ phases of single-layer MoS$_2$: A comparative first-principles study , 2017, 1804.04575.

[12]  Jeremy R. Dunklin,et al.  Production of monolayer-rich gold-decorated 2H–WS2 nanosheets by defect engineering , 2017, npj 2D Materials and Applications.

[13]  N. Koratkar,et al.  Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition , 2017 .

[14]  S. Haigh,et al.  Dual Functionalization of Liquid‐Exfoliated Semiconducting 2H‐MoS2 with Lanthanide Complexes Bearing Magnetic and Luminescence Properties , 2017 .

[15]  Wei Liu,et al.  Bottom-up precise synthesis of stable platinum dimers on graphene , 2017, Nature Communications.

[16]  E. Reed,et al.  Structural phase transition in monolayer MoTe2 driven by electrostatic doping , 2017, Nature.

[17]  Jong‐Ho Kim,et al.  Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light. , 2017, Journal of the American Chemical Society.

[18]  S. Banerjee,et al.  Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface , 2017, Science Advances.

[19]  D. Tománek,et al.  Chemical and Electronic Repair Mechanism of Defects in MoS2 Monolayers. , 2017, ACS nano.

[20]  S. Adam,et al.  Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition , 2017, Nature Communications.

[21]  M. Otyepka,et al.  Is Single Layer MoS2 Stable in the Air? , 2017, Chemistry.

[22]  Qing Hua Wang,et al.  Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface. , 2017, Nanoscale.

[23]  N. Lewis,et al.  Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS2 and MoSe2 , 2017 .

[24]  Moon J. Kim,et al.  Sub-10 nm Tunable Hybrid Dielectric Engineering on MoS2 for Two-Dimensional Material-Based Devices. , 2017, ACS nano.

[25]  L. Gu,et al.  Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly , 2017, Nature Communications.

[26]  E. Vogel,et al.  Solution-Processed Doping of Trilayer WSe2 with Redox-Active Molecules , 2017 .

[27]  Jinlan Wang,et al.  Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules. , 2017, Angewandte Chemie.

[28]  A. Krasheninnikov,et al.  Tailoring the optical properties of atomically-thin WS2via ion irradiation. , 2017, Nanoscale.

[29]  Zijing Ding,et al.  Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. , 2017, ACS nano.

[30]  P. O’Brien,et al.  Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets , 2017 .

[31]  Hua Yu,et al.  Argon Plasma Induced Phase Transition in Monolayer MoS2. , 2017, Journal of the American Chemical Society.

[32]  C. Banks,et al.  Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS2): the role of surfactant upon the hydrogen evolution reaction , 2017 .

[33]  P. Ajayan,et al.  Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. , 2017, ACS nano.

[34]  Yongfang Li,et al.  Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[35]  M. Chhowalla,et al.  Structural and quantum-state phase transitions in van der Waals layered materials , 2017, Nature Physics.

[36]  A. Ciesielski,et al.  Morphology and Electronic Properties of Electrochemically Exfoliated Graphene. , 2017, The journal of physical chemistry letters.

[37]  M. N. Kozlova,et al.  Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. , 2017, Advances in colloid and interface science.

[38]  I. Radu,et al.  Modulating the resistivity of MoS2 through low energy phosphorus plasma implantation , 2017 .

[39]  Yi Xie,et al.  Very Large-Sized Transition Metal Dichalcogenides Monolayers from Fast Exfoliation by Manual Shaking. , 2017, Journal of the American Chemical Society.

[40]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[41]  C. Bittencourt,et al.  Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion , 2017, npj 2D Materials and Applications.

[42]  B. Tay,et al.  High Mobility 2D Palladium Diselenide Field‐Effect Transistors with Tunable Ambipolar Characteristics , 2017, Advanced materials.

[43]  A. Javey,et al.  Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment. , 2017, ACS nano.

[44]  Ho Won Jang,et al.  Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges , 2017 .

[45]  F. Kreupl,et al.  Robust valley polarization of helium ion modified atomically thin MoS2 , 2017, 1705.01375.

[46]  Y. Chai,et al.  Doping, Contact and Interface Engineering of Two‐Dimensional Layered Transition Metal Dichalcogenides Transistors , 2017 .

[47]  D. Beljonne,et al.  Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion‐Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols , 2017, Advanced materials.

[48]  A. Krasheninnikov,et al.  Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering , 2017 .

[49]  Charlie Tsai,et al.  Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution , 2017, Nature Communications.

[50]  J. Coleman,et al.  All-printed thin-film transistors from networks of liquid-exfoliated nanosheets , 2017, Science.

[51]  M. A. Khan,et al.  Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides , 2017, 1704.02023.

[52]  X. Duan,et al.  Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. , 2017, Nanoscale.

[53]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[54]  Dong-Ho Kang,et al.  Electronic and Optoelectronic Devices based on Two‐Dimensional Materials: From Fabrication to Application , 2017 .

[55]  A. Strachan,et al.  Novel doping alternatives for single-layer transition metal dichalcogenides , 2017, 1703.10745.

[56]  R. Hamers,et al.  Basal-Plane Ligand Functionalization on Semiconducting 2H-MoS2 Monolayers. , 2017, ACS applied materials & interfaces.

[57]  Luca Croin,et al.  Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors , 2017, Nanotechnology.

[58]  K. Müllen,et al.  Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene , 2017, Nature Communications.

[59]  Mei Yang,et al.  Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature , 2017 .

[60]  Mark C Hersam,et al.  Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. , 2017, Accounts of chemical research.

[61]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[62]  M. Pumera,et al.  Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides , 2017 .

[63]  Kenji Watanabe,et al.  Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers , 2017, 1702.05857.

[64]  S. Lau,et al.  High‐Electron‐Mobility and Air‐Stable 2D Layered PtSe2 FETs , 2017, Advanced materials.

[65]  G. Flynn,et al.  Epitaxially Self‐Assembled Alkane Layers for Graphene Electronics , 2017, Advanced materials.

[66]  Huafeng Yang,et al.  Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. , 2017, Nature nanotechnology.

[67]  U. Waghmare,et al.  Covalent Functionalization of Nanosheets of MoS2 and MoSe2 by Substituted Benzenes and Other Organic Molecules. , 2017, Chemistry.

[68]  M. Vila,et al.  Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid-Base Interactions. , 2017, ACS applied materials & interfaces.

[69]  Chao Yan,et al.  Scalable exfoliation and dispersion of two-dimensional materials - an update. , 2017, Physical chemistry chemical physics : PCCP.

[70]  I. Radu,et al.  Molecular doping of MoS2 transistors by self-assembled oleylamine networks , 2016 .

[71]  A. T. Johnson,et al.  Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation , 2016 .

[72]  C. Huyghebaert,et al.  Tunable doping of graphene by using physisorbed self-assembled networks. , 2016, Nanoscale.

[73]  G. Guo,et al.  Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS2 by focusing radially-polarized beams. , 2016, Optics express.

[74]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[75]  Luis Vaquero-Garzon,et al.  Engineering the optoelectronic properties of MoS2 photodetectors through reversible noncovalent functionalization. , 2016, Chemical communications.

[76]  Chao Zhang,et al.  Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS. , 2016, Optics express.

[77]  Peter Liljeroth,et al.  Molecular assembly on two-dimensional materials , 2016, Nanotechnology.

[78]  B. Basu,et al.  High Antibacterial Activity of Functionalized Chemically Exfoliated MoS2. , 2016, ACS applied materials & interfaces.

[79]  Lu,et al.  A review on mechanics and mechanical properties of 2D materials—Graphene and beyond , 2016, 1611.01555.

[80]  G. Duesberg,et al.  A New 2H-2H'/1T Cophase in Polycrystalline MoS2 and MoSe2 Thin Films. , 2016, ACS applied materials & interfaces.

[81]  V. Pham,et al.  Recent Advances in Doping of Molybdenum Disulfide: Industrial Applications and Future Prospects. , 2016, Advanced materials.

[82]  Dong-Ho Kang,et al.  M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity , 2016, Scientific Reports.

[83]  D. Seo,et al.  The enhanced low resistance contacts and boosted mobility in two-dimensional p-type WSe2 transistors through Ar+ ion-beam generated surface defects , 2016 .

[84]  J. Tascón,et al.  Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS2 Nanosheets. , 2016, ACS applied materials & interfaces.

[85]  Bingbing Tian,et al.  Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. , 2016, ACS nano.

[86]  Lu Li,et al.  Transition‐Metal Substitution Doping in Synthetic Atomically Thin Semiconductors , 2016, Advanced materials.

[87]  Yongli Gao,et al.  Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates , 2016 .

[88]  D. Chi,et al.  Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides , 2016 .

[89]  J. I. Paredes,et al.  Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. , 2016, Nanoscale.

[90]  R. Deng,et al.  Facile exfoliation of MoS2 nanosheets by protein as a photothermal-triggered drug delivery system for synergistic tumor therapy , 2016 .

[91]  A. Kis,et al.  Disorder engineering and conductivity dome in ReS2 with electrolyte gating , 2016, Nature Communications.

[92]  Sergei V. Kalinin,et al.  Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams , 2016, Scientific Reports.

[93]  J. Coleman,et al.  2D‐Crystal‐Based Functional Inks , 2016, Advanced materials.

[94]  A. Ciesielski,et al.  Supramolecular Approaches to Graphene: From Self‐Assembly to Molecule‐Assisted Liquid‐Phase Exfoliation , 2016, Advanced materials.

[95]  Sungjoo Lee,et al.  Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3‐Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment , 2016, Advanced materials.

[96]  Vincenzo Palermo,et al.  Chemical Approaches to 2D Materials , 2016, Advanced materials.

[97]  Jieun Yang,et al.  Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction , 2016, Advanced materials.

[98]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[99]  Hua Zhang,et al.  Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. , 2016, Angewandte Chemie.

[100]  L. Tapasztó,et al.  The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy , 2016, Scientific Reports.

[101]  B. Sumpter,et al.  Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals. , 2016, Nano letters.

[102]  R Saito,et al.  Raman spectroscopy of transition metal dichalcogenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[103]  Xin Chen,et al.  Functionalization of Two‐Dimensional Transition‐Metal Dichalcogenides , 2016, Advanced materials.

[104]  A. Krasheninnikov,et al.  Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. , 2016, Nano letters.

[105]  D. Das,et al.  Efficient MoS2 Exfoliation by Cross-β-Amyloid Nanotubes for Multistimuli-Responsive and Biodegradable Aqueous Dispersions. , 2016, Angewandte Chemie.

[106]  P. Taheri,et al.  Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment. , 2016, ACS nano.

[107]  Yumin Zhang,et al.  Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. , 2016, Journal of the American Chemical Society.

[108]  Andrew M Rappe,et al.  Monolayer Single-Crystal 1T'-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. , 2016, Nano letters.

[109]  J. Kong,et al.  High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. , 2016, ACS nano.

[110]  N. Komatsu,et al.  Efficient and Scalable Production of 2D Material Dispersions using Hexahydroxytriphenylene as a Versatile Exfoliant and Dispersant. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[111]  Sungjoo Lee,et al.  A High‐Performance WSe2/h‐BN Photodetector using a Triphenylphosphine (PPh3)‐Based n‐Doping Technique , 2016, Advanced materials.

[112]  N. Komatsu,et al.  Readily Available “Stock Solid” of MoS2 and WS2 Nanosheets through Solid‐Phase Exfoliation for Highly Concentrated Dispersions in Water , 2016 .

[113]  C. Gadermaier,et al.  Thiol click chemistry on gold-decorated MoS2: elastomer composites and structural phase transitions. , 2016, Nanoscale.

[114]  G. Duesberg,et al.  Functionalization of Two-Dimensional MoS2 : On the Reaction Between MoS2 and Organic Thiols. , 2016, Angewandte Chemie.

[115]  Kaustav Banerjee,et al.  Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. , 2016, Nature nanotechnology.

[116]  Zijing Ding,et al.  Engineering Bandgaps of Monolayer MoS2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many‐Body Effects , 2016, Advanced materials.

[117]  T. Emrick,et al.  Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS2 nanomaterials , 2016, Chemical Science.

[118]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[119]  Sang-Yong Ju,et al.  Preparation and characterization of a covalent edge-functionalized lipoic acid–MoS2 conjugate , 2016 .

[120]  T. Zhai,et al.  Two-dimensional layered nanomaterials for gas-sensing applications , 2016 .

[121]  Xiaoyan Zhang,et al.  Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials , 2016, Nature Communications.

[122]  Yeonwoong Jung,et al.  Intercalation in two-dimensional transition metal chalcogenides , 2016 .

[123]  Yifan Sun,et al.  Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets. , 2016, Journal of the American Chemical Society.

[124]  Yi Xie,et al.  Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption , 2016, Nature Communications.

[125]  Martin Pumera,et al.  Covalent functionalization of MoS2 , 2016 .

[126]  K. Jacobsen,et al.  Defect-Tolerant Monolayer Transition Metal Dichalcogenides. , 2016, Nano letters.

[127]  Yan Li,et al.  Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna , 2016, Scientific Reports.

[128]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[129]  M. Hersam,et al.  Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. , 2016, ACS nano.

[130]  A. Balan,et al.  Raman Shifts in Electron-Irradiated Monolayer MoS2. , 2016, ACS nano.

[131]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[132]  Aleksander A. Tedstone,et al.  Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides , 2016 .

[133]  Niall McEvoy,et al.  Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. , 2016, Nanoscale.

[134]  Peng Yu,et al.  Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2 , 2016, Advanced materials.

[135]  H. Zeng,et al.  Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. , 2016, Small.

[136]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[137]  Sung Ha Park,et al.  Ultra-low Doping on Two-Dimensional Transition Metal Dichalcogenides using DNA Nanostructure Doped by a Combination of Lanthanide and Metal Ions , 2016, Scientific Reports.

[138]  J. Coleman,et al.  Photoluminescence from Liquid‐Exfoliated WS2 Monomers in Poly(Vinyl Alcohol) Polymer Composites , 2016 .

[139]  Xia Yang,et al.  Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets , 2016, Journal of Materials Science.

[140]  S. Lodha,et al.  Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. , 2016, ACS nano.

[141]  Shunri Oda,et al.  Utilizing self-assembled-monolayer-based gate dielectrics to fabricate molybdenum disulfide field-effect transistors , 2016 .

[142]  Jian Sun,et al.  Enhanced Catalytic Activities of Surfactant-Assisted Exfoliated WS₂ Nanodots for Hydrogen Evolution. , 2016, ACS nano.

[143]  J. Coleman,et al.  Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes. , 2016, ACS nano.

[144]  Byung-Kwan Cho,et al.  DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. , 2016, ACS applied materials & interfaces.

[145]  Christoph Gadermaier,et al.  Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. , 2016, ACS nano.

[146]  Kazuhito Tsukagoshi,et al.  Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. , 2016, Chemical Society reviews.

[147]  C. Fan,et al.  Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. , 2016, Nanoscale.

[148]  Jungwook Choi,et al.  Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer. , 2016, ACS nano.

[149]  H. Kuo,et al.  Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, ACS nano.

[150]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[151]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[152]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[153]  Conor P. Cullen,et al.  Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. , 2015, Chemical communications.

[154]  Y. Jung,et al.  Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. , 2015, ACS nano.

[155]  W. Schreiner,et al.  Single-Step Exfoliation and Covalent Functionalization of MoS2 Nanosheets by an Organosulfur Reaction. , 2015, Chemistry.

[156]  In-yeal Lee,et al.  Non-degenerate n-type doping by hydrazine treatment in metal work function engineered WSe2 field-effect transistor , 2015, Nanotechnology.

[157]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[158]  Benjamin J. Carey,et al.  Electronic Tuning of 2D MoS2 through Surface Functionalization , 2015, Advanced materials.

[159]  A. Krasheninnikov,et al.  Single-Layer ReS₂: Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. , 2015, ACS nano.

[160]  I. Kinloch,et al.  Graphene-based nanocomposites for structural and functional applications: using 2-dimensional materials in a 3-dimensional world , 2015 .

[161]  Hua Zhang,et al.  Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. , 2015, Journal of the American Chemical Society.

[162]  E. Reed,et al.  Structural Phase Stability Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules , 2015 .

[163]  Luigi Colombo,et al.  Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. , 2015, ACS nano.

[164]  N. Dai,et al.  Enhancing photoluminescence of trion in single-layer MoS2 using p-type aromatic molecules , 2015 .

[165]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[166]  Takhee Lee,et al.  Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. , 2015, ACS nano.

[167]  S. Pati,et al.  Tuning the opto-electronic properties of MoS2 layer using charge transfer interactions: effect of different donor molecules , 2015 .

[168]  Tawfique Hasan,et al.  Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics , 2015, SPIE NanoScience + Engineering.

[169]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[170]  Haixin Chang,et al.  Synthesis of high quality two-dimensional materials via chemical vapor deposition , 2015, Chemical science.

[171]  Fang‐Chung Chen,et al.  Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices , 2015, Materials.

[172]  Minho Yang,et al.  High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide. , 2015, Journal of colloid and interface science.

[173]  Mohamad A. Kabbani,et al.  Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS2) , 2015, Advanced materials.

[174]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[175]  J. Coleman,et al.  Nanopatterning and Electrical Tuning of MoS2 Layers with a Subnanometer Helium Ion Beam. , 2015, Nano letters.

[176]  Sungjoo Lee,et al.  High‐Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self‐Assembled Monolayer Doping , 2015 .

[177]  Lei Song,et al.  Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites , 2015 .

[178]  Bing Ni,et al.  Face the Edges: Catalytic Active Sites of Nanomaterials , 2015, Advanced science.

[179]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[180]  H. Luo,et al.  Size‐Dependent Optical Absorption of Layered MoS2 and DNA Oligonucleotides Induced Dispersion Behavior for Label‐Free Detection of Single‐Nucleotide Polymorphism , 2015 .

[181]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[182]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[183]  Wenxin Zhu,et al.  A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. , 2015, Nanoscale.

[184]  R. Wallace,et al.  Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.

[185]  Min Yi,et al.  A review on mechanical exfoliation for the scalable production of graphene , 2015 .

[186]  Zhaolin Liu,et al.  Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. , 2015, Nanoscale.

[187]  Jonathan N. Coleman,et al.  Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. , 2015, ACS nano.

[188]  Qing Tang,et al.  Stabilization and Band-Gap Tuning of the 1T-MoS2 Monolayer by Covalent Functionalization , 2015 .

[189]  B. Brennan,et al.  Effect of disorder on Raman scattering of single-layer Mo S 2 , 2015 .

[190]  Yong-Wei Zhang,et al.  Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides. , 2015, Journal of the American Chemical Society.

[191]  C. Sow,et al.  Atomic healing of defects in transition metal dichalcogenides. , 2015, Nano letters.

[192]  S. Pantelides,et al.  Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. , 2015, ACS nano.

[193]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.

[194]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[195]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[196]  T. Heine,et al.  The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. , 2015, Chemical Society reviews.

[197]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[198]  J. Robertson,et al.  Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts , 2015 .

[199]  L. David,et al.  Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode , 2015, Scientific Reports.

[200]  M. Kaur,et al.  Optimal electron irradiation as a tool for functionalization of MoS2: Theoretical and experimental investigation , 2015 .

[201]  Steven D. Lacey,et al.  Nanocellulose as green dispersant for two-dimensional energy materials , 2015 .

[202]  L. Lauhon,et al.  Investigation of band-offsets at monolayer-multilayer MoS₂ junctions by scanning photocurrent microscopy. , 2015, Nano letters.

[203]  Micah J. Green,et al.  Liquid phase exfoliation and crumpling of inorganic nanosheets. , 2015, Physical chemistry chemical physics : PCCP.

[204]  A. Krasheninnikov,et al.  Native defects in bulk and monolayer MoS 2 from first principles , 2015 .

[205]  Meng Zhang,et al.  Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser , 2015, Nano Research.

[206]  Michael Brian Whitwick,et al.  Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. , 2015, ACS nano.

[207]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[208]  P. Laplace,et al.  Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. , 2015, Angewandte Chemie.

[209]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[210]  S. Haigh,et al.  Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. , 2015, Nano letters.

[211]  Wensheng Yan,et al.  Vacancy-induced ferromagnetism of MoS2 nanosheets. , 2015, Journal of the American Chemical Society.

[212]  Jijun Zhao,et al.  Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties , 2015 .

[213]  S. Vasudevan,et al.  Water Dispersible, Positively and Negatively Charged MoS2 Nanosheets: Surface Chemistry and the Role of Surfactant Binding. , 2015, The journal of physical chemistry letters.

[214]  C. Brinker,et al.  Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. , 2015, Journal of the American Chemical Society.

[215]  Juan Li,et al.  A 2D Semiconductor–Self‐Assembled Monolayer Photoswitchable Diode , 2015, Advanced materials.

[216]  E. Vogel,et al.  Controlled Doping of Large‐Area Trilayer MoS2 with Molecular Reductants and Oxidants , 2015, Advanced materials.

[217]  Sungjoo Lee,et al.  Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. , 2015, ACS nano.

[218]  Bin Yu,et al.  Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. , 2015, ACS nano.

[219]  Jonathan N. Coleman,et al.  Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation , 2015 .

[220]  T. Heine Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. , 2015, Accounts of chemical research.

[221]  P. Ajayan,et al.  Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. , 2015, Accounts of chemical research.

[222]  Kuan-Hua Huang,et al.  Synthesis of lateral heterostructures of semiconducting atomic layers. , 2015, Nano letters.

[223]  Weibo Cai,et al.  Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. , 2015, ACS nano.

[224]  Andras Kis,et al.  Single-layer MoS2 electronics. , 2015, Accounts of chemical research.

[225]  Juan Li,et al.  Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules , 2014 .

[226]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[227]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[228]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[229]  Y. Shao,et al.  Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. , 2014, Analytical chemistry.

[230]  Arturo Ponce,et al.  Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation , 2014, Nature Communications.

[231]  F. Peeters,et al.  Engineering electronic properties of metal–MoSe2 interfaces using self-assembled monolayers , 2014 .

[232]  Sung Ha Park,et al.  n- and p-Type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[233]  Yanlong Wang,et al.  Chemically driven tunable light emission of charged and neutral excitons in monolayer WS₂. , 2014, ACS nano.

[234]  M. Blamire,et al.  The interface between superconductivity and magnetism: understanding and device prospects , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[235]  Yuan Hu,et al.  A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS 2 composites , 2014 .

[236]  D. Duong,et al.  Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. , 2014, Nanoscale.

[237]  Hao Wu,et al.  Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics , 2014, Nature Communications.

[238]  K. Sivula,et al.  Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS2 Enabled by Sonopolymer Assisted Exfoliation and Surface Modification , 2014 .

[239]  H. Jeong,et al.  Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. , 2014, Nano letters.

[240]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[241]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[242]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[243]  X. Tan,et al.  Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer , 2014 .

[244]  Yi-sheng Liu,et al.  Air stable p-doping of WSe2 by covalent functionalization. , 2014, ACS nano.

[245]  R. Wallace,et al.  Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers , 2014, Nanotechnology.

[246]  Hee‐Tae Jung,et al.  Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. , 2014, Nano letters.

[247]  Hsieh-Chih Tsai,et al.  Highly concentrated MoS2 nanosheets in water achieved by thioglycolic acid as stabilizer and used as biomarkers , 2014 .

[248]  Bo Chen,et al.  Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. , 2014, Small.

[249]  Jinlan Wang,et al.  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering , 2014, Nature Communications.

[250]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[251]  Xiaopeng Zheng,et al.  WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. , 2014, Nanoscale.

[252]  Niall McEvoy,et al.  Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets , 2014, Nature Communications.

[253]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[254]  Ying-Ying Zhang,et al.  Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells , 2014 .

[255]  Li Zhou,et al.  Facile approach to surface functionalized MoS2 nanosheets , 2014 .

[256]  R. Wallace,et al.  Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone , 2014, ACS applied materials & interfaces.

[257]  Li-Min Wang,et al.  Bandgap, mid-gap states, and gating effects in MoS2. , 2014, Nano letters.

[258]  Hongbin Li,et al.  Quantifying thiol–gold interactions towards the efficient strength control , 2014, Nature Communications.

[259]  E. Reed,et al.  Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers , 2014, Nature Communications.

[260]  Jie Yu,et al.  High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. , 2014, ACS nano.

[261]  Yiming Zhu,et al.  Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. , 2014, ACS nano.

[262]  Nian Bing Li,et al.  Hemin-functionalized MoS2 nanosheets: enhanced peroxidase-like catalytic activity with a steady state in aqueous solution , 2014 .

[263]  Ke-Jing Huang,et al.  Fabrication of electrochemiluminescence aptasensor based on in situ growth of gold nanoparticles on layered molybdenum disulfide for sensitive detection of platelet-derived growth factor-BB , 2014 .

[264]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[265]  Yong-Sung Kim,et al.  Stability and electronic structures of native defects in single-layer MoS 2 , 2014 .

[266]  F. Miao,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[267]  Wei Huang,et al.  General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. , 2014, Nanoscale.

[268]  Li-Min Wang,et al.  Bandgap and doping effects in MoS2 measured by Scanning Tunneling Microscopy and Spectroscopy , 2014, 1405.2367.

[269]  S. Khondaker,et al.  Photoluminescence Quenching in Single-layer MoS2 via Oxygen Plasma Treatment , 2014, 1405.0646.

[270]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[271]  K. Yager,et al.  Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High‐Performance Organic Electronics , 2014, Advanced materials.

[272]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[273]  S. Khondaker,et al.  Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. , 2014, Nanoscale.

[274]  Jiaqiang Yan,et al.  Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. , 2014, ACS nano.

[275]  F. Guinea,et al.  Effect of point defects on the optical and transport properties of mos2 and ws2 , 2014, 1404.1934.

[276]  Robert M. Wallace,et al.  MoS2 functionalization for ultra-thin atomic layer deposited dielectrics , 2014 .

[277]  Zhihong Liu,et al.  Establishing water-soluble layered WS₂ nanosheet as a platform for biosensing. , 2014, Analytical chemistry.

[278]  B. Guo,et al.  A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process. , 2014, Chemical communications.

[279]  Lei Song,et al.  Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites , 2014 .

[280]  J. Tascón,et al.  Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants , 2014 .

[281]  Gang Liu,et al.  PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual‐Modal CT/Photoacoustic Imaging Guided Photothermal Therapy , 2014, Advanced materials.

[282]  Xiaojuan Zhao,et al.  Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan , 2014 .

[283]  Emanuele Orgiu,et al.  25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices , 2014, Advanced materials.

[284]  P. Ajayan,et al.  Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. , 2014, Nano letters.

[285]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[286]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[287]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[288]  A. Ciesielski,et al.  Graphene via sonication assisted liquid-phase exfoliation. , 2014, Chemical Society reviews.

[289]  Bo Liu,et al.  High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide , 2014, Nature Communications.

[290]  M. Quinn,et al.  Aqueous dispersions of exfoliated molybdenum disulfide for use in visible-light photocatalysis. , 2013, ACS applied materials & interfaces.

[291]  L. Ottaviano,et al.  Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum , 2013 .

[292]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[293]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[294]  Sudhir Ravula,et al.  Kitchen‐Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS2 Nanosheets Using Culinary Hydrocolloids , 2015 .

[295]  Gotthard Seifert,et al.  Defect-induced conductivity anisotropy in MoS2monolayers , 2013, 1311.0474.

[296]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[297]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[298]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[299]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[300]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[301]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[302]  L. Zhen,et al.  Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. , 2013, ACS nano.

[303]  Y. Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[304]  S. Qin,et al.  Functionalization of monolayer MoS2 by substitutional doping: A first-principles study , 2013 .

[305]  S. Sanvito,et al.  Possible doping strategies for MoS 2 monolayers: An ab initio study , 2013 .

[306]  Phong Nguyen,et al.  Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. , 2013, Nano letters.

[307]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[308]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[309]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[310]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[311]  P. Ajayan,et al.  Temperature-dependent phonon shifts in monolayer MoS2 , 2013, 1307.2447.

[312]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[313]  T. Heinz,et al.  Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[314]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[315]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[316]  Wei Chen,et al.  Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor , 2013 .

[317]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[318]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[319]  Ramiz A. Boulos,et al.  Pyrene-conjugated hyaluronan facilitated exfoliation and stabilisation of low dimensional nanomaterials in water. , 2013, Chemical communications.

[320]  S. Notley High yield production of photoluminescent tungsten disulphide nanoparticles. , 2013, Journal of colloid and interface science.

[321]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[322]  Yi-Tao Liu,et al.  Processable and robust MoS2 paper chemically cross-linked with polymeric ligands by the coordination of divalent metal ions. , 2013, Chemistry, an Asian journal.

[323]  Jin Yu,et al.  Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. , 2013, The journal of physical chemistry letters.

[324]  Mrinmoy De,et al.  Ligand conjugation of chemically exfoliated MoS2. , 2013, Journal of the American Chemical Society.

[325]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[326]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[327]  B. Radisavljevic,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[328]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[329]  G. M. Lazzerini,et al.  Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzene‐Based Self‐Assembled Monolayer , 2013, Advanced materials.

[330]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[331]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[332]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[333]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[334]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[335]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[336]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[337]  Ramiz A. Boulos,et al.  p-Phosphonic acid calix[8]arene assisted exfoliation and stabilization of 2D materials in water. , 2012, Chemical communications.

[338]  M. Aono,et al.  Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation , 2012 .

[339]  Jie Yin,et al.  Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues , 2012 .

[340]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[341]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[342]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[343]  Ching-Ping Wong,et al.  Large-scale production of two-dimensional nanosheets , 2012 .

[344]  L. David,et al.  Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[345]  Jonathan N. Coleman,et al.  Correction to “Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers” , 2012 .

[346]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[347]  M. Cecchini,et al.  Predicting self-assembly: from empirism to determinism. , 2012, Chemical Society reviews.

[348]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[349]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[350]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[351]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[352]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[353]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[354]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[355]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[356]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[357]  D B Tanner,et al.  Stable hole doping of graphene for low electrical resistance and high optical transparency , 2011, Nanotechnology.

[358]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[359]  G. M. Lazzerini,et al.  Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. , 2011, Physical chemistry chemical physics : PCCP.

[360]  M. Strano,et al.  Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. , 2011, Journal of the American Chemical Society.

[361]  P. Samorí,et al.  Blueprinting macromolecular electronics. , 2011, Nature chemistry.

[362]  C. Rovira,et al.  A robust molecular platform for non-volatile memory devices with optical and magnetic responses. , 2011, Nature chemistry.

[363]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[364]  S. Flemer Selenol Protecting Groups in Organic Chemistry: Special Emphasis on Selenocysteine Se-Protection in Solid Phase Peptide Synthesis , 2011, Molecules.

[365]  C. Papp,et al.  Covalent bulk functionalization of graphene. , 2011, Nature chemistry.

[366]  C. M. Folkman,et al.  Coexistence of superconductivity and ferromagnetism in two dimensions. , 2011, Physical review letters.

[367]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[368]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[369]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[370]  M. Bonini,et al.  Towards Supramolecular Engineering of Functional Nanomaterials: Pre‐Programming Multi‐Component 2D Self‐Assembly at Solid‐Liquid Interfaces , 2010, Advanced materials.

[371]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[372]  Jakob Kibsgaard,et al.  Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. , 2010, ACS nano.

[373]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[374]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[375]  A. Turchanin,et al.  On the release of hydrogen from the S-H groups in the formation of self-assembled monolayers of thiols. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[376]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[377]  Tim O. Wehling,et al.  First-principles studies of water adsorption on graphene: The role of the substrate , 2008, 0809.2894.

[378]  M. I. Katsnelson,et al.  Chemical functionalization of graphene with defects. , 2008, Nano letters.

[379]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[380]  M. Mayor,et al.  Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers , 2007, Proceedings of the National Academy of Sciences.

[381]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[382]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[383]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[384]  H. A. Therese,et al.  Overcoming the insolubility of molybdenum disulfide nanoparticles through a high degree of sidewall functionalization using polymeric chelating ligands. , 2006, Angewandte Chemie.

[385]  Costas J. Spanos,et al.  Fundamentals of Semiconductor Manufacturing and Process Control , 2006 .

[386]  Costas J. Spanos,et al.  Fundamentals of Semiconductor Manufacturing and Process Control: May/Fundamentals of Semiconductor Manufacturing and Process Control , 2006 .

[387]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[388]  J. Park,et al.  Scanning tunneling microscopy investigation of nanostructures produced by Ar+ and He+ bombardment of MoS2 surfaces , 2005 .

[389]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[390]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[391]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[392]  K. Clays,et al.  A molecular multiproperty switching array based on the redox behavior of a ferrocenyl polychlorotriphenylmethyl radical. , 2004, Angewandte Chemie.

[393]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[394]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[395]  T. Nevell,et al.  Ultra‐Low Surface Energy Polymers: The Molecular Design Requirements , 2003 .

[396]  A. W. Cordes,et al.  Magneto-Opto-Electronic Bistability in a Phenalenyl-Based Neutral Radical , 2002, Science.

[397]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[398]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[399]  W. Andreoni,et al.  Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction , 2000 .

[400]  C. Lenardi,et al.  XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions , 1999 .

[401]  Christopher G. Wiegenstein,et al.  Methanethiol Adsorption on Defective MoS2(0001) Surfaces , 1999 .

[402]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[403]  D. Grainger,et al.  X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces , 1996 .

[404]  K. Schulz,et al.  Ethanethiol Decomposition Pathways on MoS2(0001) , 1996 .

[405]  N. Sengoku,et al.  Investigations of Electronic Structures of Defects Introduced by Ar Ion Bombardments on MoS 2 by Scanning Tunneling Microscopy , 1995 .

[406]  S. Cincotti,et al.  SELF-ASSEMBLED ALKANE MONOLAYERS ON MOSE2 AND MOS2 , 1993 .

[407]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[408]  N. McIntyre,et al.  Effects of argon ion bombardment on basal plane and polycrystalline MoS2 , 1990 .

[409]  A. Henglein,et al.  Preparation of colloidal semiconductor solutions of MoS2 and WSe2 via sonication , 1989 .

[410]  S. D. Cameron,et al.  Edge Surfaces in Lithographically Textured Molybdenum Disulfide , 1987, Science.

[411]  R. Nuzzo,et al.  Fundamental Studies of the Chemisorption of Organosulfur Compounds on Au( 111). Implications for Molecular Self-Assembly on Gold Surfaces , 1987 .

[412]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[413]  S. Davis,et al.  Oxygen chemisorption at defect sites in MoS2 and ReS2 basal plane surfaces , 1984 .

[414]  R. Hoffmann,et al.  Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides , 1984 .

[415]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[416]  H. Wise,et al.  Hydrodesulfurization activity and electronic properties of molybdenum sulfide catalyst , 1974 .

[417]  M. Dines Intercalation in layered compounds , 1974 .

[418]  J. M. Chen,et al.  Effects of low-energy argon-ion bombardment on MoS2 , 1974 .

[419]  R. H. Williams,et al.  Adsorption anisotropy in layer chalcogenides , 1972 .

[420]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[421]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[422]  R. Frindt,et al.  Single Crystals of MoS2 Several Molecular Layers Thick , 1966 .

[423]  R. Frindt,et al.  Physical properties of layer structures : optical properties and photoconductivity of thin crystals of molybdenum disulphide , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[424]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[425]  Xiaodong Zhuang,et al.  Cobaloxime anchored MoS2 nanosheets as electrocatalysts for the hydrogen evolution reaction , 2018 .

[426]  Xiao Zhang,et al.  Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications , 2017 .

[427]  Zibiao Li,et al.  Functionalization of 2D transition metal dichalcogenides for biomedical applications. , 2017, Materials science & engineering. C, Materials for biological applications.

[428]  J. Coleman,et al.  Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. , 2016, Small.

[429]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[430]  M. Hersam,et al.  High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. , 2016, Small.

[431]  S. Perry,et al.  The Effect of Low Energy Ion Implantation on MoS2 , 2016 .

[432]  Benzhao He,et al.  A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles , 2015 .

[433]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[434]  Andras Kis,et al.  MoS2 and semiconductors in the flatland , 2015 .

[435]  Jinmao You,et al.  A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen , 2014, Analytical and Bioanalytical Chemistry.

[436]  Zhi-Man Bai,et al.  Surface functionalization of MoS2 with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites , 2014 .

[437]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.

[438]  W. Marsden I and J , 2012 .

[439]  Jerzy Leszczynski,et al.  Non-linear optical properties of matter : from molecules to condensed phases , 2006 .

[440]  A. Painelli,et al.  Collective and Cooperative Phenomena in Molecular Functional Materials , 2006 .

[441]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[442]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .