This work introduces a bang-bang fractional-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> phase-locked loop with quantization noise shaping that overcomes the classical noise limit of a standard bang-bang phase detector. An adaptive algorithm, working in the background of the main system, guarantees optimal noise shaping across process and environmental variations. The prototype, implemented in a standard 28-nm CMOS process, has a core area of 0.21 mm<sup>2</sup> and achieves an rms jitter (integrated from 1 kHz to 100 MHz) of 69.5 fs for integer-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> synthesized channels, 79.7 fs for typical fractional-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> channels, and 99.6 fs for near-integer fractional channels with a worst case fractional spur of −51.1 dBc. The power consumption is 10.8 mW, leading to a jitter-power figure of merit of −252.8 dB and −251.6 dB for integer-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and fractional-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> channels, respectively.