Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus

Inhibitory interneurons are a critical component of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While many studies have dissected the function of specific interneuron subtypes, the relationship between interneurons and pyramidal cell synchrony in vivo remains unclear. We use an all-optical approach to simultaneously record hippocampal interneurons and pyramidal cells, and test the network influence of single interneurons. We show that CA1 interneurons form a functionally interconnected network that promotes synchrony through disinhibition during awake immobility without altering endogenous cell assemblies. A network model indicates that cell assemblies and dense but unspecific connectivity between interneurons are necessary ingredients to explain our experimental results. Thus, interneurons may not only operate via division of labor, but also through concerted activity. Our data challenge the idea of a purely decorrelating or segregating function of inhibition.

[1]  C. Akerman,et al.  Intracellular chloride regulation mediates local sleep pressure in the cortex , 2022, Nature Neuroscience.

[2]  G. Buzsáki,et al.  Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons , 2022, Neuron.

[3]  Raoul-Martin Memmesheimer,et al.  High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1 , 2022, PLoS Comput. Biol..

[4]  G. Buzsáki,et al.  Extrinsic control and intrinsic computation in the hippocampal CA1 circuit , 2021, Neuron.

[5]  A. Losonczy,et al.  Local circuit amplification of spatial selectivity in the hippocampus , 2021, Nature.

[6]  W. Kilb When Are Depolarizing GABAergic Responses Excitatory? , 2021, Frontiers in Molecular Neuroscience.

[7]  Peter M. Klein,et al.  Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior , 2021, Neuron.

[8]  R. Khazipov,et al.  How development sculpts hippocampal circuits and function. , 2021, Physiological reviews.

[9]  Michel A. Picardo,et al.  The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion , 2021, bioRxiv.

[10]  Uday K. Jagadisan,et al.  High performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks , 2021, bioRxiv.

[11]  Claudia Clopath,et al.  Inhibitory stabilization and cortical computation , 2020, Nature Reviews Neuroscience.

[12]  C. Clopath,et al.  Theory of neuronal perturbome in cortical networks , 2020, Proceedings of the National Academy of Sciences.

[13]  A. Losonczy,et al.  Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice , 2020, Neuron.

[14]  E. Scott,et al.  Calcium Imaging and the Curse of Negativity , 2020, bioRxiv.

[15]  R. Cossart,et al.  Hippocampal hub neurons maintain distinct connectivity throughout their lifetime , 2020, Nature Communications.

[16]  R. Kempter,et al.  Generation of Sharp Wave-Ripple Events by Disinhibition , 2020, The Journal of Neuroscience.

[17]  E. Mann,et al.  Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations , 2020, The Journal of Neuroscience.

[18]  György Buzsáki,et al.  Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments , 2020, Neuron.

[19]  Peyman Golshani,et al.  Breakdown of spatial coding and interneuron synchronization in epileptic mice , 2020, Nature Neuroscience.

[20]  György Buzsáki,et al.  Preexisting hippocampal network dynamics constrain optogenetically induced place fields , 2019, Neuron.

[21]  Michaël Zugaro,et al.  Hippocampal Sequences During Exploration: Mechanisms and Functions , 2019, Front. Cell. Neurosci..

[22]  Justin K. O’Hare,et al.  Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning , 2019, Neuron.

[23]  Brian R. Lee,et al.  In Vivo Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light , 2019, The Journal of Neuroscience.

[24]  Selmaan N. Chettih,et al.  Single-neuron perturbations reveal feature-specific competition in V1 , 2019, Nature.

[25]  P. Jonas,et al.  Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus , 2018, Nature Communications.

[26]  G. Buzsáki,et al.  Space and Time: The Hippocampus as a Sequence Generator , 2018, Trends in Cognitive Sciences.

[27]  Farnaz Sharif,et al.  Differential Representation of Landmark and Self-Motion Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks during Septal Inactivation , 2018, The Journal of Neuroscience.

[28]  Laura Waller,et al.  Precise multimodal optical control of neural ensemble activity , 2018, Nature Neuroscience.

[29]  M. Häusser,et al.  Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies , 2018, bioRxiv.

[30]  Emiliano Ronzitti,et al.  Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos , 2016, The Journal of Neuroscience.

[31]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks , 2017, Neuron.

[32]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[33]  Daniel Maruyama,et al.  Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation , 2017, Nature Communications.

[34]  Sébastien Royer,et al.  Place cells are more strongly tied to landmarks in deep than in superficial CA1 , 2017, Nature Communications.

[35]  Sandro Romani,et al.  Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells , 2017, Nature Neuroscience.

[36]  J. Csicsvari,et al.  Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo , 2017, Neuron.

[37]  D. Dupret,et al.  Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples , 2016, Neuron.

[38]  Valentina Emiliani,et al.  Two-Photon Holographic Stimulation of ReaChR , 2016, Front. Cell. Neurosci..

[39]  Rosa Cossart,et al.  Awake hippocampal reactivations project onto orthogonal neuronal assemblies , 2016, Science.

[40]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[41]  Valentina Emiliani,et al.  Three-dimensional spatiotemporal focusing of holographic patterns , 2016, Nature Communications.

[42]  M. Zugaro,et al.  Hippocampo-cortical coupling mediates memory consolidation during sleep , 2016, Nature Neuroscience.

[43]  Rosa Cossart,et al.  Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information , 2015, Neuron.

[44]  G. Buzsáki Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning , 2015, Hippocampus.

[45]  Antoine Adamantidis,et al.  Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency , 2015, Neuron.

[46]  Stacy D. Grunke,et al.  Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. , 2014, Journal of Visualized Experiments.

[47]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations , 2014, Neuron.

[48]  Attila Losonczy,et al.  Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells , 2014, Neuron.

[49]  Adam Kepecs,et al.  From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons , 2014, Current Opinion in Neurobiology.

[50]  P. Somogyi,et al.  Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus , 2014, Neuron.

[51]  K. Deisseroth,et al.  Dendritic Inhibition Provided by Interneuron-Specific Cells Controls the Firing Rate and Timing of the Hippocampal Feedback Inhibitory Circuitry , 2014, The Journal of Neuroscience.

[52]  Vítor Lopes-dos-Santos,et al.  Detecting cell assemblies in large neuronal populations , 2013, Journal of Neuroscience Methods.

[53]  P. Somogyi,et al.  Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo , 2013, Nature Neuroscience.

[54]  Ivan Soltesz,et al.  Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity , 2013, Hippocampus.

[55]  R. Yuste,et al.  Decorrelating Action of Inhibition in Neocortical Networks , 2013, The Journal of Neuroscience.

[56]  C. Schevon,et al.  How inhibition influences seizure propagation , 2013, Neuropharmacology.

[57]  Jozsef Csicsvari,et al.  Dynamic Reconfiguration of Hippocampal Interneuron Circuits during Spatial Learning , 2013, Neuron.

[58]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[59]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[60]  Thomas Klausberger,et al.  Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons , 2012, Hippocampus.

[61]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[62]  Michaël Zugaro,et al.  Hippocampal ripples and memory consolidation , 2011, Current Opinion in Neurobiology.

[63]  G. Dragoi,et al.  Preplay of future place cell sequences by hippocampal cellular assemblies , 2011, Nature.

[64]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[65]  S. Chamberland,et al.  Synapse-Specific Inhibitory Control of Hippocampal Feedback Inhibitory Circuit , 2010, Front. Cell. Neurosci..

[66]  Ivan Cohen,et al.  Unitary inhibitory field potentials in the CA3 region of rat hippocampus , 2010, The Journal of physiology.

[67]  Ole Paulsen,et al.  Priming of Hippocampal Population Bursts by Individual Perisomatic-Targeting Interneurons , 2010, The Journal of Neuroscience.

[68]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[69]  Valentina Emiliani,et al.  Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. , 2008, Optics express.

[70]  Christoph Lutz,et al.  Holographic photolysis of caged neurotransmitters , 2008, Nature Methods.

[71]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[72]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[73]  György Buzsáki,et al.  Hippocampal place cell assemblies are speed-controlled oscillators , 2007, Proceedings of the National Academy of Sciences.

[74]  M. Wilson,et al.  Spatial selectivity and theta phase precession in CA1 interneurons , 2007, Hippocampus.

[75]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[76]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[77]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[78]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[79]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[80]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[81]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[82]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  Fraser T. Sparks,et al.  Local feedback inhibition tightly controls rapid formation of hippocampal place fields , 2021, Neuron.

[84]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[85]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.