Empirical minimization
暂无分享,去创建一个
[1] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[2] S. Geer. A New Approach to Least-Squares Estimation, with Applications , 1986 .
[3] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[4] M. Talagrand. Sharper Bounds for Gaussian and Empirical Processes , 1994 .
[5] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[6] Peter L. Bartlett,et al. Efficient agnostic learning of neural networks with bounded fan-in , 1996, IEEE Trans. Inf. Theory.
[7] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[8] LpWilliam B. Johnson,et al. Finite dimensional subspaces of , 2000 .
[9] V. Koltchinskii,et al. Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.
[10] P. Massart. Some applications of concentration inequalities to statistics , 2000 .
[11] S. Geer. Empirical Processes in M-Estimation , 2000 .
[12] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[13] Vladimir Koltchinskii,et al. Rademacher penalties and structural risk minimization , 2001, IEEE Trans. Inf. Theory.
[14] M. Ledoux. The concentration of measure phenomenon , 2001 .
[15] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[16] E. Rio,et al. Inégalités de concentration pour les processus empiriques de classes de parties , 2001 .
[17] Shahar Mendelson,et al. Rademacher averages and phase transitions in Glivenko-Cantelli classes , 2002, IEEE Trans. Inf. Theory.
[18] Shahar Mendelson,et al. Improving the sample complexity using global data , 2002, IEEE Trans. Inf. Theory.
[19] Shahar Mendelson,et al. A Few Notes on Statistical Learning Theory , 2002, Machine Learning Summer School.
[20] O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms , 2002 .
[21] Thierry Klein. Une inégalité de concentration à gauche pour les processus empiriques , 2002 .
[22] Peter L. Bartlett,et al. Localized Rademacher Complexities , 2002, COLT.
[23] Michael I. Jordan,et al. Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates , 2003, NIPS.
[24] Shahar Mendelson,et al. On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..
[25] Jon A. Wellner,et al. Ratio Limit Theorems for Empirical Processes , 2003 .
[26] Peter L. Bartlett,et al. Model Selection and Error Estimation , 2000, Machine Learning.
[27] S. Mendelson. Geometric Parameters in Learning Theory , 2004 .
[28] G. Lugosi,et al. Complexity regularization via localized random penalties , 2004, math/0410091.
[29] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[30] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.