Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr3 on GaN: Towards Integrated Optoelectronic Applications.

Integrating metallic halide perovskites with established modern semiconductor technology is significant for promoting the development of application-level optoelectronic devices. To realize such devices, exploring the growth dynamics and interfacial carrier dynamics of perovskites deposited on the core materials of semiconductor technology is essential. Herein, we report the incommensurate heteroepitaxy of highly oriented single-crystal cesium lead bromide (CsPbBr3) on c-wurtzite GaN/sapphire substrates with atomically smooth surface and uniform rectangular shape by chemical vapor deposition. The CsPbBr3 microplatelet crystal exhibits green-colored lasing under room temperature and has a structural stability comparable with that grown on van der Waals mica substrates. Time-resolved photoluminescence spectroscopy studies show that the type-II CsPbBr3-GaN heterojunction effectively enhances the separation and extraction of free carriers inside CsPbBr3. These findings provide insights into the fabrication and application-level integrated optoelectronic devices of CsPbBr3 perovskites.

[1]  Jinlan Wang,et al.  One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. , 2019, The journal of physical chemistry letters.

[2]  Liyun Zhao,et al.  Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires , 2019, Applied Physics Letters.

[3]  Zhengshan J. Yu,et al.  Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% , 2019, Joule.

[4]  M. Lipson,et al.  How lasing happens in CsPbBr3 perovskite nanowires , 2019, Nature Communications.

[5]  D. Milliron,et al.  Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) Perovskite under High Humidity , 2018, The Journal of Physical Chemistry C.

[6]  Hui Bian,et al.  All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% , 2018, Nature Communications.

[7]  Yizheng Jin,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[8]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[9]  Pengfei Yang,et al.  High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition. , 2018, ACS nano.

[10]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[11]  Lijie Li,et al.  Enhanced Efficiency of Flexible GaN/Perovskite Solar Cells Based on the Piezo-Phototronic Effect , 2018, ACS Applied Energy Materials.

[12]  Xinfeng Liu,et al.  Morphology‐Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices , 2018, Advanced Optical Materials.

[13]  Hua Zhou,et al.  Low‐Temperature Absorption, Photoluminescence, and Lifetime of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2018 .

[14]  Liyun Zhao,et al.  Ultrathin CsPbX3 Nanowire Arrays with Strong Emission Anisotropy , 2018, Advanced materials.

[15]  Handong Sun,et al.  Highly Efficient Green Light‐Emitting Diodes from All‐Inorganic Perovskite Nanocrystals Enabled by a New Electron Transport Layer , 2018 .

[16]  Rui Wang,et al.  Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. , 2018, Small.

[17]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[18]  Jinxiang Deng,et al.  Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation , 2018, Nature Communications.

[19]  L. Dai,et al.  Epitaxial Single‐Layer MoS2 on GaN with Enhanced Valley Helicity , 2018, Advanced materials.

[20]  Pengfei Yang,et al.  Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires. , 2017, Nano letters.

[21]  Qing Zhang,et al.  Strong Exciton-Photon Coupling and lasing behavior in All-Inorganic CsPbBr3 Micro/nanowire Fabry-Perot cavity , 2017, 1711.04919.

[22]  Darien J. Morrow,et al.  Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO3). , 2017, Journal of the American Chemical Society.

[23]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[24]  X. Duan,et al.  Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications , 2017, Nano Research.

[25]  Jian Zhang,et al.  Lattice‐Symmetry‐Driven Epitaxy of Hierarchical GaN Nanotripods , 2017 .

[26]  H. Zeng,et al.  All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. , 2017, Small.

[27]  T. Xu,et al.  Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. , 2017, ACS nano.

[28]  Wei Huang,et al.  Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence , 2017, Nature Communications.

[29]  Jinsong Huang,et al.  Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals , 2017, Nature Communications.

[30]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[31]  Shui-Tong Lee,et al.  Atomistic Origins of Surface Defects in CH3NH3PbBr3 Perovskite and Their Electronic Structures. , 2017, ACS nano.

[32]  Shaohua Shen,et al.  Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2017, Nano letters.

[33]  Yiping Wang,et al.  Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. , 2016, Nano letters.

[34]  Liangcong Jiang,et al.  On the Origin of Hysteresis in Perovskite Solar Cells , 2016 .

[35]  A. Alivisatos,et al.  Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. , 2016, Journal of the American Chemical Society.

[36]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[37]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[38]  Leong Chuan Kwek,et al.  Resolved-sideband Raman cooling of an optical phonon in semiconductor materials , 2016, Nature Photonics.

[39]  Jasmine P. H. Rivett,et al.  High-performance light-emitting diodes based on carbene-metal-amides , 2016, Science.

[40]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[41]  Lain-Jong Li,et al.  Heterostructured WS2/CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity , 2016, Advanced materials.

[42]  Xin-Ke Wang,et al.  Exciton localization in solution-processed organolead trihalide perovskites , 2016, Nature Communications.

[43]  N. Mutsukura,et al.  Structural properties of GaN layers grown on Al2O3 (0001) and GaN/Al2O3 template by reactive radio-frequency magnetron sputter epitaxy , 2016 .

[44]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[45]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[46]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[47]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[48]  Jacky Even,et al.  Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals (Adv. Funct. Mater. 16/2015) , 2015 .

[49]  U. Banin,et al.  Dimensionality Effects on Fluorescence Resonance Energy Transfer between Single Semiconductor Nanocrystals and Multiple Dye Acceptors , 2015 .

[50]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[51]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[52]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[53]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[54]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[55]  Vladan Stevanović,et al.  Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. , 2014, Physical chemistry chemical physics : PCCP.

[56]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[57]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[58]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[59]  Fei Meng,et al.  Screw dislocation driven growth of nanomaterials. , 2013, Accounts of chemical research.

[60]  Hong-Bo Sun,et al.  Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array , 2013 .

[61]  Q. Xiong,et al.  Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. , 2013, Nano letters.

[62]  J. Arbiol,et al.  Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. , 2012, Nano letters.

[63]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[64]  S. Denbaars,et al.  Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy , 1997 .

[65]  S. Lefrant,et al.  Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering , 1997 .

[66]  Robert F. Davis,et al.  Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy , 1997 .

[67]  Oliver Ambacher,et al.  Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition , 1996 .

[68]  Vladimir Dmitriev,et al.  ELECTRIC BREAKDOWN IN GAN P-N JUNCTIONS , 1996 .

[69]  K. Ueno,et al.  Application of Van der Waals epitaxy to highly heterogeneous systems , 1989 .

[70]  A. Sood,et al.  Experimental study of the decomposition of Y1Ba2Cu3O7−x into tetragonaland orthorhombic phases , 1988 .

[71]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .

[72]  Song Jin,et al.  Continuous‐Wave Lasing in Cesium Lead Bromide Perovskite Nanowires , 2018 .

[73]  Zhiyong Wu,et al.  Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires , 2017 .

[74]  Song Jin,et al.  Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites , 2017, Advanced materials.

[75]  R. Schwoebel Step motion on crystal surfaces , 1968 .