Optimizing the Band Gap of Effective Mass Negativity in Acoustic Metamaterials

A dual-resonator microstructure design is proposed for acoustic metamaterials to achieve broadband effective mass negativity. We demonstrate the advantage of acoustic wave attenuation over a wider frequency spectrum as compared to the narrow band gap of a single-resonator design. We explicitly confirm the effect of negative effective mass density by analysis of wave propagation using finite element simulations. Examples of practical application like vibration isolation and blast wave mitigation are presented and discussed.

[1]  Guoliang Huang,et al.  On the negative effective mass density in acoustic metamaterials , 2009 .

[2]  G. Newaz,et al.  Metamaterial with mass-stem array in acoustic cavity , 2012 .

[3]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[4]  Graeme W Milton,et al.  On modifications of Newton's second law and linear continuum elastodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Guoliang Huang,et al.  Band Gaps in a Multiresonator Acoustic Metamaterial , 2010 .

[6]  J. J. Park,et al.  Acoustic metamaterial exhibiting four different sign combinations of density and modulus , 2011, 1102.1767.

[7]  Mohamed Farhat,et al.  Ultrabroadband elastic cloaking in thin plates. , 2009, Physical review letters.

[8]  Jensen Li,et al.  Double-negative acoustic metamaterial. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Gengkai Hu,et al.  Experimental study on negative effective mass in a 1D mass–spring system , 2008 .

[10]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[11]  Steven A. Cummer,et al.  Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density , 2011 .

[12]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[13]  Daniel Torrent,et al.  Omnidirectional broadband acoustic absorber based on metamaterials , 2012 .

[14]  J B Pendry,et al.  Universal evolution of perfect lenses. , 2011, Physical review letters.

[15]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[16]  Chunyin Qiu,et al.  Metamaterial with simultaneously negative bulk modulus and mass density. , 2007, Physical review letters.

[17]  Ping Sheng,et al.  Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime , 2010 .

[18]  Xiang Zhang,et al.  Negative acoustic index metamaterial , 2011 .

[19]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[20]  C. Sun,et al.  Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus , 2011 .

[21]  C. Sun,et al.  An elastic metamaterial with simultaneously negative mass density and bulk modulus , 2011 .

[22]  V. Shalaev Optical negative-index metamaterials , 2007 .

[23]  Gengkai Hu,et al.  Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass , 2011, 1105.0001.

[24]  C. Sun,et al.  Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density , 2009 .

[25]  P. Sheng,et al.  Analytic model of phononic crystals with local resonances , 2005 .

[26]  Jensen Li,et al.  Extreme acoustic metamaterial by coiling up space. , 2012, Physical review letters.