A Geometric Approach to Confidence Sets for Ratios: Fieller‘s Theorem, Generalizations, and Bootstrap

We present a geometric method to determine confidence sets for the ratio E(Y )/E(X) of the means of random variables X and Y. This method reduces the problem of constructing confidence sets for the ratio of two random variables to the problem of constructing confidence sets for the means of one-dimensional random variables. It is valid in a large variety of circumstances. In the case of normally distributed random variables, the so-constructed confidence sets coincide with the standard Fieller confidence sets. Generalizations of our construction lead to definitions of exact and conservative confidence sets for very general classes of distributions, provided the joint expectation of (X, Y ) exists and linear combina- tions of the form aX + bY are well-behaved. Finally, our geometric method allows us to derive a very simple bootstrap approach for constructing conservative confi- dence sets for ratios that perform favorably in certain situations, in particular in the asymmetric heavy-tailed regime.

[1]  E. C. Fieller The Biological Standardization of Insulin , 1940 .

[2]  T. Hayton The Advanced Theory of Statistics, Vol. 3 , 1968 .

[3]  U. V. Luxburg,et al.  Confidence Sets for Ratios: A Purely Geometric Approach To Fieller's Theorem , 2004 .

[4]  David E. Booth,et al.  Multivariate statistical inference and applications , 1997 .

[5]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[6]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[7]  Jiunn T. Hwang,et al.  The Nonexistence of 100$(1 - \alpha)$% Confidence Sets of Finite Expected Diameter in Errors-in-Variables and Related Models , 1987 .

[8]  Martin A. Koschat A Characterization of the Fieller Solution , 1987 .

[9]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[10]  G Kendall Maurice,et al.  The Advanced Theory Of Statistics Vol-i , 1943 .

[11]  John P. Buonaccorsi,et al.  Fieller's Theorem , 2005 .

[12]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[13]  E. C. Fieller THE DISTRIBUTION OF THE INDEX IN A NORMAL BIVARIATE POPULATION , 1932 .

[14]  J. T. Hwang,et al.  FIELLER ' S PROBLEMS AND RESAMPLING TECHNIQUES , 1999 .

[15]  F. Y. Edgeworth,et al.  The theory of statistics , 1996 .

[16]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[17]  E. C. Fieller SOME PROBLEMS IN INTERVAL ESTIMATION , 1954 .

[18]  K. Athreya BOOTSTRAP OF THE MEAN IN THE INFINITE VARIANCE CASE , 1987 .

[19]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[20]  J. Buonaccorsi,et al.  A comparison of confidence regions and designs in estimation of a ratio , 1984 .

[21]  Joseph P. Romano,et al.  Subsampling inference for the mean in the heavy-tailed case , 1999 .

[22]  Myint Tin Comparison of Some Ratio Estimators , 1965 .

[23]  L. Sahoo,et al.  Efficiencies of six almost unbiased ratio estimators under a particular model , 1995 .

[24]  Christian Léger,et al.  Bootstrap confidence intervals for ratios of expectations , 1999, TOMC.

[25]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[26]  J. Durbin A note on the application of Quenouille's method of bias reduction to the estimation of ratios , 1959 .

[27]  Keith Knight,et al.  On the Bootstrap of the Sample Mean in the Infinite Variance Case , 1989 .

[28]  G. Milliken On a confidence interval about a parameter estimated by a ratio of normal random variables , 1982 .

[29]  Raoul LePage,et al.  On bootstrap estimation of the distribution of the studentized mean , 1996 .

[30]  Volker H. Franz,et al.  Ratios: A short guide to confidence limits and proper use , 2007, 0710.2024.

[31]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[32]  M. G. Kendall,et al.  The advanced theory of statistics. Vols. 2. , 1969 .

[33]  D. J. Finney Statistical Method in Biological Assay , 1966 .