Experimental and numerical studies of the J-integral for a surface flaw

Applied J-integral values for a surface cracked tensile panel are experimentally evaluated by measuring strain and displacement quantities along an instrumented contour located on the longitudinal symmetry plane. Nonlinear, 3-D, finite-element analyses are employed to obtain corresponding estimates of the contour and area integral contributions to a 3-D J-integral. Finite element results indicate that the area integral contribution is negligibly small on the symmetry plane; the fracture driving force is thus adequately characterized by the experimental contour values. Detailed comparisons of the experimental and numerical results (crack mouth opening displacement, J-values, and strains along the contour) reveal that the one-quarter symmetric, finite element model accurately predicts the panel response for overall (gauge length) strains approaching 1.6 times the material yield strain, beyond which the observed deformation patterns exhibited globally asymmetric shear bands.RésuméOn évalue expérimentalement les valuers de l'intégrale J dans un panneau en traction fissuré en surface, en mesurant les dilatations et les déplacements suivant un contour instrumenté localisé le long du plan de symétrie longitudinale. On utilise une analyse non linéaire par éléments finis à trois dimensions afin d'obtenir des estimations de la manière dont les intégrales de contour et de surface contribuent à l'intégrale J à 3D.Les résultats par éléments finis indiquent que la contribution de l'intégrale de surface est négligeable suivant le plan de symétrie; le déterminant de la rupture peut done être adéquatement décrit par les valeurs expérimentales relatives au contour.Des comparaisons sur le détail des résultats expérimentaux et numériques révèlent qu'un modèle par éléments finis quart-symétriques peut prédire de manière sûre la réaction de la pièce par rapport à des dilatations globales de près de 1,6 fois la dilatation à la limite élastique du matériau, valeur au-delà de laquelle les configurations de la déformation observées font état de bandes de glissement globalement asymétriques.

[1]  T. K. Hellen,et al.  An integral associated with the state of a crack tip in a non-elastic material , 1977 .

[2]  Brian Moran,et al.  Energy release rate along a three-dimensional crack front in a thermally stressed body , 1986, International Journal of Fracture.

[3]  D. Parks The virtual crack extension method for nonlinear material behavior , 1977 .

[4]  W. S. Blackburn Path independent integrals to predict onset of crack instability in an elastic plastic material , 1972 .

[5]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[6]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[7]  Satya N. Atluri,et al.  AN EQUIVALENT DOMAIN INTEGRAL METHOD FOR COMPUTING CRACK-TIP INTEGRAL PARAMETERS IN NON-ELASTIC, THERMO-MECHANICAL FRACTURE , 1987 .

[8]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[9]  R. H. Dodds,et al.  Experimental and analytical estimates of the J-integral for tensile panels containing short center cracks , 1985 .

[10]  R. H. Dodds Finite element evaluation of J parameters in 3D , 1987 .

[11]  R. Barsoum Triangular quarter‐point elements as elastic and perfectly‐plastic crack tip elements , 1977 .

[12]  M. Amestoy,et al.  On the definition of local path independent integrals in three-dimensional crack problems , 1981 .

[13]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[14]  Robert H. Dodds,et al.  Software virtual machines for development of finite element systems , 1986 .

[15]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[16]  Satya N. Atluri,et al.  Incremental path-independent integrals in inelastic and dynamic fracture mechanics , 1984 .

[17]  H. deLorenzi,et al.  On the energy release rate and the J-integral for 3-D crack configurations , 1982 .

[18]  James C. Newman,et al.  Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates , 1979 .

[19]  Shigeru Aoki,et al.  On the path independent integral-Ĵ , 1980 .

[20]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[21]  K. Kishimoto,et al.  Distribution of crack extension force, the Ĵ-integral, along a through-crack-front of a plate , 1983 .

[22]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[23]  D. T. Read,et al.  Comparison of several path independent integrals including plasticity effects , 1986 .

[24]  R. H. Dodds Numerical techniques for plasticity computations in finite element analysis , 1987 .

[25]  Robert H. Dodds,et al.  Numerical evaluation of a 3-D J-integral and comparison with experimental results for a 3-Point bend specimen , 1988 .

[26]  T. K. Hellen,et al.  Non‐linear fracture mechanics and finite elements , 1987 .

[27]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[28]  M. D. German,et al.  Requirements for a one parameter characterization of crack tip fields by the HRR singularity , 1981, International Journal of Fracture.