Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy.

[1]  B. Seitz,et al.  Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability , 2013, Acta ophthalmologica.

[2]  Y. Zheng,et al.  Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes , 2016, Journal of biophotonics.

[3]  D. Luce Determining in vivo biomechanical properties of the cornea with an ocular response analyzer , 2005, Journal of cataract and refractive surgery.

[4]  B. Seitz,et al.  Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus , 2014, Journal of cataract and refractive surgery.

[5]  K. Pesudovs,et al.  Predicting visual performance from optical quality metrics in keratoconus , 2009, Clinical & experimental optometry.

[6]  Marcella Q. Salomão,et al.  Corneal Deformation Response with Dynamic Ultra-high-speed Scheimpflug Imaging for Detecting Ectatic Corneas , 2016 .

[7]  A. Elsheikh,et al.  Clinical Evaluation of Methods to Correct Intraocular Pressure Measurements by the Goldmann Applanation Tonometer, Ocular Response Analyzer, and Corvis ST Tonometer for the Effects of Corneal Stiffness Parameters , 2016, Journal of glaucoma.

[8]  Bernardo T. Lopes,et al.  ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. , 2013, Arquivos brasileiros de oftalmologia.

[9]  N. Congdon,et al.  Corneal Hysteresis Is Correlated with Reduction in Axial Length After Trabeculectomy , 2012, Current eye research.

[10]  Renato Ambrósio,et al.  Tomographic parameters for the detection of keratoconus: suggestions for screening and treatment parameters. , 2014, Eye & contact lens.

[11]  A. Frings,et al.  Screening for Keratoconus With New Dynamic Biomechanical In Vivo Scheimpflug Analyses , 2015, Cornea.

[12]  R. Ambrósio,et al.  Computerized Corneal Topography and Its Importance to Wavefront Technology , 2001, Cornea.

[13]  Renato Ambrósio,et al.  Corneal biomechanics: Where are we? , 2016, Journal of current ophthalmology.

[14]  A. Elsheikh,et al.  Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. , 2015, Experimental eye research.

[15]  Sashia Bak-Nielsen,et al.  Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. , 2014, Journal of refractive surgery.

[16]  Ahmed Elsheikh,et al.  Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. , 2017, Journal of refractive surgery.

[17]  Caitriona Kirwan,et al.  Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. , 2006, American journal of ophthalmology.

[18]  David P Piñero,et al.  In vivo characterization of corneal biomechanics , 2014, Journal of cataract and refractive surgery.

[19]  Renato Ambrósio,et al.  Scheimpflug imaging for laser refractive surgery , 2013, Current opinion in ophthalmology.

[20]  Steven E. Wilson,et al.  Biomechanics and wound healing in the cornea. , 2006, Experimental eye research.

[21]  S. Klyce,et al.  Corneal topographic and pachymetric screening of keratorefractive patients. , 2003, Journal of refractive surgery.

[22]  W. Dupps,et al.  Corneal biomechanics: a decade later. , 2014, Journal of cataract and refractive surgery.

[23]  Tukezban Huseynova,et al.  Accelerated versus conventional corneal collagen crosslinking , 2014, Journal of cataract and refractive surgery.

[24]  Evaluation of Ocular Biomechanical Indices to Distinguish Normal from Keratoconus Eyes , 2012 .

[25]  Jinhua Yu,et al.  Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST , 2015, Biomedical engineering online.

[26]  Michele Lanza,et al.  Evaluation of Corneal Deformation Analyzed with Scheimpflug Based Device in Healthy Eyes and Diseased Ones , 2014, BioMed research international.

[27]  William J Dupps,et al.  Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. , 2014, Ophthalmology.

[28]  J. Wolffsohn,et al.  Changes of Corneal Biomechanics With Keratoconus , 2012, Cornea.

[29]  Vishal Jhanji,et al.  Variability of Corneal Deformation Response in Normal and Keratoconic Eyes , 2015, Optometry and vision science : official publication of the American Academy of Optometry.

[30]  Jonatán D. Galletti,et al.  Multivariate Analysis of the Ocular Response Analyzer's Corneal Deformation Response Curve for Early Keratoconus Detection , 2015, Journal of ophthalmology.

[31]  C. Roberts Concepts and misconceptions in corneal biomechanics. , 2014, Journal of cataract and refractive surgery.

[32]  Bernardo T. Lopes,et al.  Detection of Keratoconus With a New Biomechanical Index. , 2016, Journal of refractive surgery.

[33]  Bernardo T. Lopes,et al.  Ectasia susceptibility before laser vision correction. , 2015, Journal of cataract and refractive surgery.

[34]  Renato Ambrósio,et al.  Evaluation of Corneal Shape and Biomechanics Before LASIK , 2011, International ophthalmology clinics.

[35]  Giuliano Scarcelli,et al.  Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. , 2013, Investigative ophthalmology & visual science.

[36]  S. Yun,et al.  Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. , 2014, Investigative ophthalmology & visual science.

[37]  B. Seitz,et al.  Staging of keratoconus indices regarding tomography, topography, and biomechanical measurements. , 2015, American journal of ophthalmology.

[38]  S. Yun,et al.  In vivo Brillouin optical microscopy of the human eye , 2012, Optics express.

[39]  N. Congdon,et al.  Influence of Corneal Structure, Corneal Responsiveness, and Other Ocular Parameters on Tonometric Measurement of Intraocular Pressure , 2007, Journal of glaucoma.

[40]  Bernardo T. Lopes,et al.  Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. , 2016, Journal of refractive surgery.

[41]  K. Zadnik,et al.  Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date. , 2007, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[42]  Ose,et al.  Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas , 2010 .

[43]  Myhanh T Nguyen,et al.  Corneal Biomechanical Properties in Normal, Forme Fruste Keratoconus, and Manifest Keratoconus After Statistical Correction for Potentially Confounding Factors , 2011, Cornea.

[44]  Walton Nosé,et al.  Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. , 2010, Ophthalmology.

[45]  Bernardo T. Lopes,et al.  Ectasia Detection by the Assessment of Corneal Biomechanics. , 2016, Cornea.

[46]  Bernardo Lopes,et al.  Horizontal pachymetric profile for the detection of keratoconus , 2015 .

[47]  A. Elsheikh,et al.  Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer. , 2017, Journal of refractive surgery.

[48]  C. McGhee,et al.  Contemporary Treatment Paradigms in Keratoconus , 2015, Cornea.

[49]  Ayala Cohen,et al.  Detection of subclinical keratoconus using an automated decision tree classification. , 2013, American journal of ophthalmology.

[50]  S. Shah,et al.  Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. , 2009, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[51]  Robert Koprowski,et al.  Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus , 2015, Comput. Biol. Medicine.

[52]  Xiaohui Li,et al.  Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. , 2014, Journal of refractive surgery.

[53]  J. B. Randleman,et al.  Screening for ectasia risk: what are we screening for and how should we screen for it? , 2013, Journal of refractive surgery.

[54]  Renato Ambrósio,et al.  Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. , 2013, Arquivos brasileiros de oftalmologia.

[55]  Edward Wylegala,et al.  Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. , 2014, Investigative ophthalmology & visual science.

[56]  J. Ruiz-Moreno,et al.  Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. , 2016, Journal of biomechanics.

[57]  William J Dupps,et al.  Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. , 2011, Journal of refractive surgery.

[58]  B. Valbon,et al.  Bioestatísticas: conceitos fundamentais e aplicações práticas , 2014 .

[59]  G. Kymionis,et al.  Long‐term results of combined transepithelial phototherapeutic keratectomy and corneal collagen crosslinking for keratoconus: Cretan protocol , 2014, Journal of cataract and refractive surgery.

[60]  Renato Ambrósio,et al.  Scheimpflug-based tomography and biomechanical assessment in pressure-induced stromal keratopathy. , 2013, Journal of refractive surgery.

[61]  Luana P. N. Araújo,et al.  Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. , 2013, Journal of refractive surgery.

[62]  Jay S Pepose,et al.  Postoperative changes in intraocular pressure and corneal biomechanical metrics: Laser in situ keratomileusis versus laser‐assisted subepithelial keratectomy , 2009, Journal of cataract and refractive surgery.

[63]  T Seiler,et al.  Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus , 1998, Journal of cataract and refractive surgery.

[64]  R. Krueger,et al.  Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. , 2013, Journal of refractive surgery.

[65]  Renato Ambrósio,et al.  Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. , 2011, Arquivos brasileiros de oftalmologia.

[66]  Renato Ambrósio,et al.  Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. , 2017, Journal of refractive surgery.

[67]  Giuliano Scarcelli,et al.  Translating Ocular Biomechanics into Clinical Practice: Current State and Future Prospects , 2015, Current eye research.

[68]  D. Patel,et al.  Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. , 2014, Investigative ophthalmology & visual science.

[69]  Kohji Nishida,et al.  Global Consensus on Keratoconus and Ectatic Diseases , 2015, Cornea.

[70]  William J Dupps,et al.  Biomechanics of corneal ectasia and biomechanical treatments. , 2014, Journal of cataract and refractive surgery.

[71]  S. Yun,et al.  Brillouin optical microscopy for corneal biomechanics. , 2012, Investigative ophthalmology & visual science.

[72]  N Maeda,et al.  Detection and classification of mild irregular astigmatism in patients with good visual acuity. , 1998, Survey of ophthalmology.

[73]  N. Congdon,et al.  Central corneal thickness and corneal hysteresis associated with glaucoma damage. , 2006, American journal of ophthalmology.

[74]  D. Patel,et al.  Biomechanical properties of the keratoconic cornea: a review , 2015, Clinical & experimental optometry.

[75]  Min Gao,et al.  Corneal Biomechanical Assessment Using Corneal Visualization Scheimpflug Technology in Keratoconic and Normal Eyes , 2014, Journal of ophthalmology.

[76]  Konstantin Kotliar,et al.  Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus , 2011, British Journal of Ophthalmology.

[77]  Hans R Vellara BOptom and,et al.  Biomechanical properties of the keratoconic cornea: a review , 2014 .

[78]  I. Cunliffe,et al.  Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. , 2007, Investigative ophthalmology & visual science.

[79]  R. D. Stulting,et al.  Keratoconus and corneal ectasia after LASIK. , 2005, Journal of cataract and refractive surgery.

[80]  Walton Nosé,et al.  Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy Brazilian patients. , 2008, Journal of refractive surgery.

[81]  Y. Rabinowitz,et al.  Computer-assisted corneal topography in keratoconus. , 1989, Refractive & corneal surgery.

[82]  Renato Ambrósio,et al.  Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. , 2010, Journal of refractive surgery.

[83]  Michael W. Belin,et al.  Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties , 2013 .

[84]  A. Elsheikh,et al.  Development and validation of a correction equation for Corvis tonometry , 2016, Computer methods in biomechanics and biomedical engineering.

[85]  Y. Zheng,et al.  Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. , 2014, Journal of refractive surgery.

[86]  David Touboul,et al.  Biomechanical characteristics of the ectatic cornea , 2008, Journal of cataract and refractive surgery.

[87]  Renato Ambrósio,et al.  Imaging of the cornea: topography vs tomography. , 2010, Journal of refractive surgery.

[88]  Alain Saad,et al.  Topographic and tomographic properties of forme fruste keratoconus corneas. , 2010, Investigative ophthalmology & visual science.