Maximize a Monotone Function with a Generic Submodularity Ratio

Generic submodularity ratio \(\gamma \) is a general measurement to characterize how close a nonnegative monotone set function is to be submodular. In this paper, we make a systematic analysis of greedy algorithms for maximizing a monotone and normalized set function with a generic submodularity ratio \(\gamma \) under Cardinality constraints, Knapsack constraints, Matroid constraints and K-intersection constraints.

[1]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[2]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[3]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[4]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[5]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[6]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[7]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[8]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[9]  Yuval Filmus,et al.  A Tight Combinatorial Algorithm for Submodular Maximization Subject to a Matroid Constraint , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[10]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[11]  Maria-Florina Balcan,et al.  Learning submodular functions , 2010, ECML/PKDD.