Solving an elliptic PDE eigenvalue problem via automated multi-level substructuring and hierarchical matrices

[1]  K. Reimer H2-Matrix-Arithmetik basierend auf Niedrigrangupdates , 2015 .

[2]  Jens Markus Melenk,et al.  H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approximability of the inverses o , 2013, Numerische Mathematik.

[3]  Ronald Kriemann,et al.  H-LU Factorization on Many-Core Systems , 2014 .

[4]  Steffen Börm,et al.  Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates , 2013, Comput. Vis. Sci..

[5]  Klaus-Jürgen Bathe,et al.  The subspace iteration method - Revisited , 2013 .

[6]  H. Voss,et al.  Improving eigenpairs of automated multilevel substructuring with subspace iterations , 2013 .

[7]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[8]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[9]  Stefan A. Sauter,et al.  hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p , 2010, SIAM J. Numer. Anal..

[10]  Wolfgang Arendt,et al.  Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .

[11]  L. Grasedyck,et al.  Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.

[12]  Sabine Le Borne,et al.  Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.

[13]  L. GRASEDYCK,et al.  Performance Of H-Lu Preconditioning For Sparse Matrices , 2008 .

[14]  Ronald Kriemann,et al.  Parallel black box $$\mathcal {H}$$-LU preconditioning for elliptic boundary value problems , 2008 .

[15]  Lehel Banjai,et al.  FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study , 2008 .

[16]  Zhaojun Bai,et al.  An Implementation and Evaluation of the AMLS Method for Sparse Eigenvalue Problems , 2008, TOMS.

[17]  James Reinders,et al.  Intel® threading building blocks , 2008 .

[18]  Richard B. Lehoucq,et al.  Multilevel Methods for Eigenspace Computations in Structural Dynamics , 2007 .

[19]  L. Grasedyck,et al.  Domain-decomposition Based ℌ-LU Preconditioners , 2007 .

[20]  Kolja Elssel,et al.  An A Priori Bound for Automated Multilevel Substructuring , 2006, SIAM J. Matrix Anal. Appl..

[21]  Sabine Le Borne,et al.  H-matrix Preconditioners in Convection-Dominated Problems , 2005, SIAM J. Matrix Anal. Appl..

[22]  Zhaojun Bai,et al.  An Algebraic Substructuring Method for Large-Scale Eigenvalue Calculation , 2005, SIAM J. Sci. Comput..

[23]  Ronald Kriemann,et al.  Parallel -Matrix Arithmetics on Shared Memory Systems , 2005, Computing.

[24]  Mario Bebendorf,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Hierarchical Lu Decomposition Based Preconditioners for Bem Hierarchical Lu Decomposition Based Preconditioners for Bem , 2022 .

[25]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[26]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..

[27]  M. Lintner The Eigenvalue Problem for the 2D Laplacian in ℋ-Matrix Arithmetic and Application to the Heat and Wave Equation , 2003, Computing.

[28]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[29]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[30]  A. Kropp,et al.  Efficient Broadband Vibro-Acoustic Analysis of Passenger Car Bodies Using an FE-Based Component Mode Synthesis Approach , 2003 .

[31]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[32]  Matthew Frederick Kaplan Implementation of automated multilevel substructuring for frequency response analysis of structures , 2001 .

[33]  M. B. Muller,et al.  Extending the frequency response capabilities of Automated Multi-Level Substructuring , 2000 .

[34]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[35]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[36]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[37]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[38]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[39]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[40]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[41]  P. Seshu,et al.  Substructuring and Component Mode Synthesis , 1997 .

[42]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[43]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[44]  Jeffrey K. Bennighof Adaptive multi-level substructuring for acoustic radiation and scattering from complex structures , 1993 .

[45]  Frédéric Bourquin,et al.  Numerical study of an intrinsic component mode synthesis method , 1992 .

[46]  W. Hackbusch Elliptic Differential Equations , 1992 .

[47]  Dietrich Braess,et al.  Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .

[48]  F. Bourquin,et al.  Component mode synthesis and eigenvalues of second order operators : discretization and algorithm , 1992 .

[49]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[50]  F. Bourquin Analysis and comparison of several component mode synthesis methods on one-dimensional domains , 1990 .

[51]  Serge Levendorskiĭ Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .

[52]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[53]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[54]  I. Babuska,et al.  Estimates for the errors in Eigenvalue and Eigenvector approximation by Galerkinmethods, with particular attention to the case of multiple Eigenvalues , 1987 .

[55]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[56]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[57]  S. Agmon Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators , 1968 .

[58]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[59]  Walter C. Hurty,et al.  Vibrations of Structural Systems by Component Mode Synthesis , 1960 .

[60]  L. M. Milne-Thomson Methoden der mathematischen Physik , 1944, Nature.

[61]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .