Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain

Tactile sensory information is first channeled from the primary somatosensory cortex on the postcentral gyrus to the parietal opercular region (i.e., the secondary somatosensory cortex) and the rostral inferior parietal lobule and, from there, to the prefrontal cortex, with which bidirectional connections exist. Although we know that tactile memory signals can be found in the prefrontal cortex, the contribution of the different prefrontal areas to tactile memory remains unclear. The present functional MRI study shows that a specific part of the prefrontal cortex in the human brain, namely the midventrolateral prefrontal region (cytoarchitectonic areas 47/12 and 45), is involved in active controlled retrieval processing necessary for the disambiguation of vibrotactile information in short-term memory. Furthermore, we demonstrate that this particular part of the prefrontal cortex interacts functionally with the secondary somatosensory areas in the parietal operculum and the rostral inferior parietal lobule during controlled processing for the retrieval of specific tactile information.

[1]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[2]  Alan C. Evans,et al.  Obligatory role of the LIFG in synonym generation: evidence from PET and cortical stimulation , 1997, Neuroreport.

[3]  E. Deibert,et al.  Neural pathways in tactile object recognition , 1999, Neurology.

[4]  Alan C. Evans,et al.  Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. , 1996, Cerebral cortex.

[5]  M. Metz-Lutz Handbook of neuropsychology, Vol 6 et 7, Rapin I, Segalowitz SJ (Eds.). Elsevier (1992) , 1993 .

[6]  D. Zipser,et al.  A spiking network model of short-term active memory , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[8]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Raichle,et al.  Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. , 1993, Somatosensory & motor research.

[10]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[11]  David H Zald,et al.  Somatosensory processing in the human inferior prefrontal cortex. , 2002, Journal of neurophysiology.

[12]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[14]  Justin A. Harris,et al.  Transient Storage of a Tactile Memory Trace in Primary Somatosensory Cortex , 2002, The Journal of Neuroscience.

[15]  Alan C. Evans,et al.  Functional activation of the human frontal cortex during the performance of verbal working memory tasks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Romo,et al.  Neuronal correlates of decision-making in secondary somatosensory cortex , 2002, Nature Neuroscience.

[17]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[18]  Susan J. Lederman,et al.  Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study , 2005, NeuroImage.

[19]  R. Poldrack,et al.  Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex , 2005, Neuron.

[20]  Edward E. Smith,et al.  Spatial working memory in humans as revealed by PET , 1993, Nature.

[21]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[22]  Roberta L. Klatzky,et al.  What vs. where in touch: an fMRI study , 2005, NeuroImage.

[23]  B. Postle Working memory as an emergent property of the mind and brain , 2006, Neuroscience.

[24]  M Petrides,et al.  Selective activation of the ventrolateral prefrontal cortex in the human brain during active retrieval processing , 2001, The European journal of neuroscience.

[25]  Emilio Salinas,et al.  Cognitive neuroscience: Flutter Discrimination: neural codes, perception, memory and decision making , 2003, Nature Reviews Neuroscience.

[26]  J. Jonides,et al.  Brain mechanisms of proactive interference in working memory , 2006, Neuroscience.

[27]  Randy L Buckner,et al.  Functional–Anatomic Correlates of Control Processes in Memory , 2003, The Journal of Neuroscience.

[28]  Elisabeth A. Murray,et al.  Relative contributions of SII and area 5 to tactile discrimination in monkeys , 1984, Behavioural Brain Research.

[29]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[30]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[31]  Michael Petrides,et al.  The mid‐ventrolateral prefrontal cortex: insights into its role in memory retrieval , 2003, The European journal of neuroscience.

[32]  H Burton,et al.  Attending to and Remembering Tactile Stimuli: A Review of Brain Imaging Data and Single-Neuron Responses , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[33]  Manjit,et al.  Neurology , 1912, NeuroImage.

[34]  T. Paus,et al.  Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies , 1998, Neuroreport.

[35]  David Badre,et al.  Frontal lobe mechanisms that resolve proactive interference. , 2005, Cerebral cortex.

[36]  Alan C. Evans,et al.  Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. B. Cipolloni,et al.  Cortical connections of the frontoparietal opercular areas in the Rhesus monkey , 1999, The Journal of comparative neurology.

[38]  Leslie G. Ungerleider,et al.  Face encoding and recognition in the human brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Rüdiger J. Seitz,et al.  A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study , 2003, NeuroImage.

[40]  Kenneth O. Johnson,et al.  Neural Mechanisms of Tactual form and Texture Perception , 1992 .

[41]  J. Fuster,et al.  Mnemonic neuronal activity in somatosensory cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[43]  R. Poldrack,et al.  Recovering Meaning Left Prefrontal Cortex Guides Controlled Semantic Retrieval , 2001, Neuron.

[44]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[45]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[46]  G. Ettlinger,et al.  Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey , 1976, Brain Research.

[47]  R W Cox,et al.  Real‐time 3D image registration for functional MRI , 1999, Magnetic resonance in medicine.

[48]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[49]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[50]  David P. Friedman,et al.  A modality-specific somatosensory area within the insula of the rhesus monkey , 1993, Brain Research.

[51]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.