Biogeographic pattern and relevant environmental factors for rhizobial communities in the rhizosphere and root nodules of kudzu (Pueraria lobata)

[1]  Paulino Sánchez Santillán,et al.  DEGRADACIÓN DE SUSTRATOS LIGNOCELULÓSICOS Y PRODUCCIÓN DE BIOGÁS in vitro POR FERMENTACIÓN SÓLIDA CON Pleurotus ostreatus , 2021 .

[2]  X. Sui,et al.  Bradyrhizobium arachidis mediated enhancement of (oxy)matrine content in the medicinal legume Sophora flavescens , 2021, Letters in applied microbiology.

[3]  Lu Liu,et al.  Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province , 2021, Archives of Microbiology.

[4]  M. Gifford,et al.  Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis , 2020, Frontiers in Microbiology.

[5]  B. Frey,et al.  Geographical patterns of root nodule bacterial diversity in cultivated and wild populations of a woody legume crop. , 2020, FEMS microbiology ecology.

[6]  E. Wang,et al.  Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. , 2020, Systematic and applied microbiology.

[7]  G. Nabi,et al.  Molecular Mechanisms of Anticancer Activities of Puerarin , 2020, Cancer management and research.

[8]  K. Lindström,et al.  Effectiveness of nitrogen fixation in rhizobia , 2019, Microbial biotechnology.

[9]  E. Wang,et al.  Genetic divergence among Bradyrhizobium strains nodulating wild and cultivated Kummerowia spp. in China. , 2019, Systematic and applied microbiology.

[10]  Yajuan Li,et al.  Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. , 2018, The Science of the total environment.

[11]  H. S. Gehlot,et al.  Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. , 2018, FEMS microbiology ecology.

[12]  B. Vanlauwe,et al.  Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya , 2018, Agriculture, ecosystems & environment.

[13]  C. Tian,et al.  Rhizobial biogeography and inoculation application to soybean in four regions across China , 2018, Journal of applied microbiology.

[14]  Huimin Yu,et al.  Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010 , 2018, Scientific Reports.

[15]  F. Dakora,et al.  Distribution and Phylogeny of Microsymbionts Associated with Cowpea (Vigna unguiculata) Nodulation in Three Agroecological Regions of Mozambique , 2017, Applied and Environmental Microbiology.

[16]  C. Tian,et al.  Pyrosequencing of rpoB uncovers a significant biogeographical pattern of rhizobial species in soybean rhizosphere , 2017 .

[17]  E. James,et al.  Biogeography of nodulated legumes and their nitrogen-fixing symbionts. , 2017, The New phytologist.

[18]  P. Thrall,et al.  Host species and environmental variation can influence rhizobial community composition , 2017 .

[19]  Kazuki Saito,et al.  Adaptation of the symbiotic Mesorhizobium–chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism , 2016, Proceedings of the National Academy of Sciences.

[20]  K. Lindström,et al.  Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China. , 2016, Systematic and applied microbiology.

[21]  M. Yemefack,et al.  Phylogeny and nitrogen fixation potential of Bradyrhizobium species isolated from the legume cover crop Pueraria phaseoloides (Roxb.) Benth. in Eastern Cameroon , 2016 .

[22]  J. Michiels,et al.  Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations , 2015 .

[23]  J. Cornelissen,et al.  Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism , 2015, Proceedings of the National Academy of Sciences.

[24]  Kelin Wang,et al.  The Bradyrhizobium-legume symbiosis is dominant in the shrubby ecosystem of the Karst region, Southwest China , 2015 .

[25]  D. Ober,et al.  New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation , 2015, Proceedings of the National Academy of Sciences.

[26]  Í. Aranjuelo,et al.  Nodule performance within a changing environmental context. , 2014, Journal of plant physiology.

[27]  C. Tian,et al.  Robust Markers Reflecting Phylogeny and Taxonomy of Rhizobia , 2012, PloS one.

[28]  Yun Zhang,et al.  Biodiversity and Biogeography of Rhizobia Associated with Soybean Plants Grown in the North China Plain , 2011, Applied and Environmental Microbiology.

[29]  Zhang Chao,et al.  Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi. , 2011, Canadian journal of microbiology.

[30]  S. Follak Potential distribution and environmental threat of Pueraria lobata , 2011, Central European Journal of Biology.

[31]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[32]  J. McLachlan,et al.  Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants , 2007, Proceedings of the National Academy of Sciences.

[33]  S. Barnes,et al.  Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry. , 2007, Phytochemical analysis : PCA.

[34]  R. Sylvester-Bradley,et al.  Promiscuity and responses to rhizobial inoculation of tropical kudzu (Pueraria phaseoloides) , 1991 .

[35]  R. Hardy,et al.  Applications of the acetylene-ethylene assay for measurement of nitrogen fixation , 1973 .