The Bernstein polynomial basis: A centennial retrospective
暂无分享,去创建一个
[1] Alexander E. Bogdanovich,et al. Three-dimensional variational theory of laminated composite plates and its implementation with Bernstein basis functions , 2000 .
[2] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[3] Y. Simsek. Functional equations from generating functions: a novel approach to deriving identities for the Bernstein basis functions , 2011, 1111.4880.
[4] Ron Goldman,et al. q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves , 2012, J. Approx. Theory.
[5] Joab R. Winkler. A companion matrix resultant for Bernstein polynomials , 2003 .
[6] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[7] L. Dworsky. An Introduction to Probability , 2008 .
[8] C. D. Boor,et al. B-Form Basics. , 1986 .
[9] Robert C. Kirby,et al. Fast simplicial finite element algorithms using Bernstein polynomials , 2011, Numerische Mathematik.
[10] Kai Hormann,et al. Mean value coordinates for arbitrary planar polygons , 2006, TOGS.
[11] Paul de Faget de Casteljau. POLoynomials, POLar Forms, and InterPOLation , 1992 .
[12] T. Büyükköroglu,et al. On different types of stability of linear polytopic systems , 2010 .
[13] Bernard Mourrain,et al. Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..
[14] Ron Goldman,et al. Markov chains and computer-aided geometric design: part I - problems and constraints , 1984, TOGS.
[15] John P. Boyd. Exploiting parity in converting to and from Bernstein polynomials and orthogonal polynomials , 2008, Appl. Math. Comput..
[16] Gerald Farin,et al. Geometric modeling : algorithms and new trends , 1987 .
[17] G. Tolstov. Fourier Series , 1962 .
[18] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[19] W. Gautschi. Questions of Numerical Condition Related to Polynomials , 1978 .
[20] W. Gautschi. On the condition of algebraic equations , 1973 .
[21] J. Sánchez-Reyes,et al. Complex rational Bézier curves , 2009, Comput. Aided Geom. Des..
[22] Tony DeRose,et al. A multisided generalization of Bézier surfaces , 1989, TOGS.
[23] A. Rababah. Transformation of Chebyshev–Bernstein Polynomial Basis , 2003 .
[24] Allan Pinkus,et al. Weierstrass and Approximation Theory , 2000 .
[25] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[26] Mathieu Desbrun,et al. Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..
[27] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[28] Mark Ainsworth,et al. Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..
[29] Tom Lyche,et al. Mathematical methods in computer aided geometric design , 1989 .
[30] A. Robin Forrest,et al. Interactive interpolation and approximation by Bézier polynomials , 1990, Comput. Aided Des..
[31] Joe D. Warren. Creating multisided rational Bézier surfaces using base points , 1992, TOGS.
[32] Bert Jüttler,et al. The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..
[33] Charles M. Grinstead,et al. Introduction to probability , 1999, Statistics for the Behavioural Sciences.
[34] Pierre Bezier,et al. The Mathematical Basis of the Unisurf CAD System , 1986 .
[35] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[36] Jürgen Garloff,et al. Robust Schur Stability of Polynomials with Polynomial Parameter Dependency , 1999, Multidimens. Syst. Signal Process..
[37] J. Garloff,et al. Lower bound functions for polynomials , 2003 .
[38] P. Bézier. Numerical control : mathematics and applications , 1972 .
[39] Michael A. Lachance,et al. Chebyshev economization for parametric surfaces , 1988, Comput. Aided Geom. Des..
[40] Dario Bini,et al. Bernstein-Bezoutian matrices , 2004, Theor. Comput. Sci..
[41] Mario Milanese,et al. Robust Analysis and Design of Control Systems Using Interval Arithmetic , 1997, Autom..
[42] A. E. Bogdanovich,et al. Three-Dimensional Variational Analysis of Composite Structures Using Bernstein Polynomial Approximations. Report 2 , 2001 .
[43] J. Winkler. A resultant matrix for scaled Bernstein polynomials , 2000 .
[44] Karl-Georg Steffens. The history of approximation theory , 2005 .
[45] Jörg Peters,et al. Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients , 1999, Comput. Aided Geom. Des..
[46] Thomas Hermann. On the stability of polynomial transformations between Taylor, Bernstein and Hermite forms , 2005, Numerical Algorithms.
[47] D. D. Stancu. Approximation of functions by means of a new generalized Bernstein operator , 1983 .
[48] Geng-Zhe Chang. Bernstein Polynomials Via the Shifting Operator , 1984 .
[49] H. Rabitz,et al. Proper construction of ab initio global potential surfaces with accurate long-range interactions , 2000 .
[50] Matthias Eck,et al. Least squares degree reduction of Bézier curves , 1995, Comput. Aided Des..
[51] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[52] Thomas W. Sederberg. Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..
[53] W. J. Gordon,et al. Bernstein-Bézier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces , 1974, JACM.
[54] Jean Braun,et al. A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.
[55] H. Keller,et al. Analysis of Numerical Methods , 1969 .
[56] Xiaomei Yang. Rounding Errors in Algebraic Processes , 1964, Nature.
[57] Herbert S. Wilf,et al. Generating functionology , 1990 .
[58] T. A. Brown,et al. Theory of Equations. , 1950, The Mathematical Gazette.
[59] Douglas N. Arnold,et al. Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.
[60] W. Feller,et al. An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .
[61] G. Alexits. Approximation theory , 1983 .
[62] Joab R. Winkler,et al. Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis , 2005, Numer. Linear Algebra Appl..
[63] Adrian Bowyer,et al. Robust arithmetic for multivariate Bernstein-form polynomials , 2000, Comput. Aided Des..
[64] J. A. Gregory. The Mathematics of Surfaces. , 1987 .
[65] Joab R. Winkler,et al. The transformation of the companion matrix resultant between the power and Bernstein polynomial bases , 2004 .
[66] John A. Gregory,et al. A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..
[67] Ron Goldman,et al. Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..
[68] Yilmaz Simsek. Construction a new generating function of Bernstein type polynomials , 2011, Appl. Math. Comput..
[69] Juan Manuel Peña,et al. Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..
[70] Taishin Nomura,et al. Complex Bézier curves and the geometry of polygons , 2010, Comput. Aided Geom. Des..
[71] Rida T. Farouki,et al. Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form , 2001, TOMS.
[72] C. Caldwell. Mathematics of Computation , 1999 .
[73] Gautam Dasgupta,et al. Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .
[74] A. J. Worsey,et al. Degree reduction of Be´zier curves , 1988 .
[75] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[76] Nicholas M. Patrikalakis,et al. Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..
[77] Joab R. Winkler. A unified approach to resultant matrices for Bernstein basis polynomials , 2008, Comput. Aided Geom. Des..
[78] George M. Phillips,et al. A survey of results on the q-Bernstein polynomials , 2010 .
[79] Andrew Bartlett,et al. Robust Control: Systems with Uncertain Physical Parameters , 1993 .
[80] Shashwati Ray,et al. An efficient algorithm for range computation of polynomials using the Bernstein form , 2009, J. Glob. Optim..
[81] Handan Akyar,et al. On Stability of Parametrized Families of Polynomials and Matrices , 2010 .
[82] Saed Samadi,et al. Explicit formula for improved filter sharpening polynomial , 2000, IEEE Trans. Signal Process..
[83] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[84] Gerald E. Farin,et al. The octant of a sphere as a non-degenerate triangular Bézier patch , 1987, Comput. Aided Geom. Des..
[85] Wolfgang Böhm,et al. A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..
[86] George K. Knopf,et al. Surface reconstruction using neural network mapping of range-sensor images to object space , 2002, J. Electronic Imaging.
[87] Tony DeRose,et al. Composing Bézier simplexes , 1988, TOGS.
[88] Oved Shisha,et al. The Bernstein form of a polynomial , 1966 .
[89] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[90] Rida T. Farouki,et al. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.
[91] Matthias Eck,et al. Degree reduction of Bézier curves , 1993, Comput. Aided Geom. Des..
[92] Christopher M. Pastore,et al. A comparison of various 3-D approaches for the analysis of laminated composite structures , 1995 .
[93] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[94] Carl de Boor,et al. Cutting corners always works , 1987, Comput. Aided Geom. Des..
[95] Ana Marco,et al. A fast and accurate algorithm for solving Bernstein–Vandermonde linear systems , 2007 .
[96] Melvin R. Spencer. Polynomial real root finding in Bernstein form , 1994 .
[97] Marie-Laurence Mazure,et al. Blossoms and Optimal Bases , 2004, Adv. Comput. Math..
[98] Alexander E. Bogdanovich,et al. Progressive Failure Analysis of Adhesive Bonded Joints with Laminated Composite Adherends , 1999 .
[99] Manfred Minimair. Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis , 2007, ASCM.
[100] M. Powell,et al. Approximation theory and methods , 1984 .
[101] Larry L. Schumaker,et al. Computing bivariate splines in scattered data fitting and the finite-element method , 2008, Numerical Algorithms.
[102] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[103] Thomas W. Sederberg,et al. Free-form deformation of solid geometric models , 1986, SIGGRAPH.
[104] Andrew Paul Smith,et al. Fast construction of constant bound functions for sparse polynomials , 2009, J. Glob. Optim..
[105] P. Bézier. MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .
[106] Giuseppe Fedele,et al. Gauss-Lobatto to Bernstein polynomials transformation , 2008 .
[107] Yilmaz Simsek. Generating functions for the Bernstein polynomials: A unified approach to deriving identities for the Bernstein basis functions , 2010 .
[108] Tony DeRose,et al. Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.
[109] M. Zettler,et al. Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion , 1998, IEEE Trans. Autom. Control..
[110] Ron Goldman,et al. Division algorithms for Bernstein polynomials , 2008, Comput. Aided Geom. Des..
[111] Rida T. Farouki,et al. High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath contour error , 2012 .
[112] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[113] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[114] J M Pe˜na. B-splines and Optimal Stability , 1997 .
[115] Rida T. Farouki,et al. Curves and surfaces in geometrical optics , 1992 .
[116] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[117] J. H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials. Part II , 1959, Numerische Mathematik.
[118] C. R. Deboor,et al. A practical guide to splines , 1978 .
[119] Rida T. Farouki,et al. On the optimal stability of the Bernstein basis , 1996, Math. Comput..
[120] Dusan M. Stipanovic,et al. Robust D-stability via positivity , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
[121] Larry L. Schumaker,et al. Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..
[122] Ron Goldman,et al. h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves , 2011, Comput. Aided Geom. Des..
[123] Elaine COHEN,et al. Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..
[124] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[125] Rida T. Farouki,et al. Physical constraints on feedrates, feed accelerations along curved tool paths , 2000, Comput. Aided Geom. Des..
[126] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[127] Xia Hong,et al. Generalized neurofuzzy network modeling algorithms using Bezier-Bernstein polynomial functions and additive decomposition , 2000, IEEE Trans. Neural Networks Learn. Syst..
[128] Wolfgang Böhm,et al. Über die Konstruktion von B-Spline-Kurven , 1977, Computing.
[129] Juan Manuel Peña,et al. Optimal Conditioning of Bernstein Collocation Matrices , 2009, SIAM J. Matrix Anal. Appl..
[130] Thomas W. Sederberg. Planar piecewise algebraic curves , 1984, Comput. Aided Geom. Des..
[131] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[132] Bolesław Szafnicki,et al. A unified approach for degree reduction of polynomials in the Bernstein basis part I: real polynomials , 2002 .
[133] C. D. Boor,et al. B-Splines without Divided Differences. , 1985 .
[134] B. Ross Barmish,et al. New Tools for Robustness of Linear Systems , 1993 .
[135] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[136] Gerald E. Farin. Curvature continuity and offsets for piecewise conics , 1989, TOGS.
[137] Ron Goldman,et al. Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling , 2002, Morgan Kaufmann series in computer graphics and geometric modeling.
[138] Wolfgang Böhm,et al. On de Boor-like algorithms and blossoming , 1988, Comput. Aided Geom. Des..
[139] Elisabeth Anna Malsch,et al. Shape functions for polygonal domains with interior nodes , 2004 .
[140] Robert C. Kirby,et al. Fast simplicial quadrature-based finite element operators using Bernstein polynomials , 2012, Numerische Mathematik.
[141] Rida T. Farouki,et al. On the numerical condition of Bernstein-Bézier subdivision processes , 1990 .
[142] Christopher Dyken,et al. Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..
[143] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[144] Hans-Peter Seidel,et al. A new multiaffine approach to B-splines , 1989, Comput. Aided Geom. Des..
[145] Abedallah Rababah,et al. Jacobi-Bernstein Basis Transformation , 2004 .
[146] Wolfgang Dahmen,et al. Subdivision algorithms converge quadratically , 1986 .
[147] Gian-Carlo Rota,et al. Linear Operators and Approximation Theory. , 1965 .
[148] Mark Meyer,et al. Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.
[149] Christophe Rabut,et al. On Pierre Bézier's life and motivations , 2002, Comput. Aided Des..
[150] Ron Goldman,et al. Polya’s Urn Model and Computer Aided Geometric Design , 1985 .
[151] Pierre Goetgheluck. On prime divisors of binomial coefficients , 1988 .
[152] M. G. Duffy,et al. Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .
[153] G. Farin. Algorithms for rational Bézier curves , 1983 .
[154] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[155] Rimvydas Krasauskas,et al. Toric Surface Patches , 2002, Adv. Comput. Math..
[156] C. Micchelli,et al. Uniform refinement of curves , 1989 .
[157] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[158] M. Lewin. On nonnegative matrices , 1971 .
[159] Fumihiko Kimura,et al. Non-four-sided patch expressions with control points , 1984, Comput. Aided Geom. Des..
[160] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[161] Dominique Michel,et al. A two-steps algorithm for approximating real roots of a polynomial in Bernstein basis , 2008, Math. Comput. Simul..
[162] B. Moran,et al. C1natural neighbor interpolant for partial differential equations , 1999 .
[163] Yongming Li,et al. Basis conversion among Bézier, Tchebyshev and Legendre , 1998, Comput. Aided Geom. Des..
[164] Paul L. Butzer,et al. Functional Analysis and Approximation , 1981 .
[165] Jörg Peters,et al. Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..
[166] Tao Ju,et al. A unified, integral construction for coordinates over closed curves , 2007, Comput. Aided Geom. Des..
[167] Gerald E. Farin,et al. Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..
[168] James Hardy Wilkinson,et al. The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.
[169] Eberhard L. Stark,et al. Bernstein — Polynome, 1912–1955 , 1981 .
[170] Guido Brunnett,et al. The geometry of optimal degree reduction of Bézier curves , 1996, Comput. Aided Geom. Des..
[171] James F. Epperson. On the Runge example , 1987 .
[172] P. Revesz. Interpolation and Approximation , 2010 .
[173] W. Burnside,et al. Theory of equations , 1886 .
[174] Michael G. Crowe,et al. A History of Vector Analysis , 1969 .
[175] Heinrich Müller,et al. Solving Algebraic Systems in Bernstein-Bézier Representation , 1991, Workshop on Computational Geometry.
[176] Jürgen Garloff,et al. Investigation of a subdivision based algorithm for solving systems of polynomial equations , 2001 .
[177] Michael S. Floater,et al. On the convergence of derivatives of Bernstein approximation , 2005, J. Approx. Theory.
[178] T. J. Rivlin. Bounds on a polynomial , 1970 .
[179] Marc Daniel,et al. The numerical problem of using Bézier curves and surfaces in the power basis , 1989, Comput. Aided Geom. Des..
[180] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[181] Leif Kobbelt,et al. Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..
[182] G. Stewart. Introduction to matrix computations , 1973 .
[183] Kai Hormann,et al. A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..
[184] Paul de Faget de Casteljau. De Casteljau's autobiography: My time at Citroën , 1999, Comput. Aided Geom. Des..
[185] Sebti Foufou,et al. Polytope-based computation of polynomial ranges , 2010, SAC '10.
[186] P. E. Bezier,et al. Example of an existing system in the motor industry: the Unisurf system , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[187] Rida T. Farouki,et al. Legendre-Bernstein basis transformations , 2000 .
[188] Joe D. Warren,et al. Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..
[189] Rida T. Farouki,et al. Computing with barycentric polynomials , 1991 .
[190] G. Chang,et al. Mathematical foundations of Bézier's technique , 1981 .
[191] J. Rice. A Theory of Condition , 1966 .
[192] Rida T. Farouki,et al. The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..
[193] T. Belytschko,et al. THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .
[194] Eugene L. Wachspress,et al. Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..
[195] Naresh K. Sinha,et al. Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[196] John Lin,et al. Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.
[197] Faget de Casteljau,et al. Shape mathematics and CAD , 1986 .
[198] Ron Goldman,et al. Markov chains and computer aided geometric design: Part II—examples and subdivision matrices , 1985, TOGS.
[199] Karl-Georg Steffens. The history of approximation theory : from Euler to Bernstein , 2006 .
[200] Les A. Piegl,et al. Fundamental developments of computer-aided geometric modeling , 1993 .
[201] Paluri S. V. Nataraj,et al. Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm , 2011, J. Glob. Optim..
[202] Jürgen Garloff,et al. Application of Bernstein Expansion to the Solution of Control Problems , 2000, Reliab. Comput..
[203] Ana Marco,et al. Polynomial least squares fitting in the Bernstein basis , 2008, 0806.2797.
[204] T. Goodman. Shape preserving representations , 1989 .
[205] Juan Manuel Peña,et al. On the optimal stability of bases of univariate functions , 2002, Numerische Mathematik.
[206] D. D. iljak,et al. Technical Communique: Robust D-stability via positivity , 1999 .
[207] Rida T. Farouki,et al. On the stability of transformations between power and Bernstein polynomial forms , 1991, Comput. Aided Geom. Des..
[208] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[209] P. Goetgheluck. Computing binomial coefficients , 1987 .
[210] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[211] Ahmed Zidna,et al. Recursive de Casteljau bisection and rounding errors , 2004, Comput. Aided Geom. Des..
[212] Abedallah Rababah,et al. The weighted dual functionals for the univariate Bernstein basis , 2007, Appl. Math. Comput..