The Bernstein polynomial basis: A centennial retrospective

One hundred years after the introduction of the Bernstein polynomial basis, we survey the historical development and current state of theory, algorithms, and applications associated with this remarkable method of representing polynomials over finite domains. Originally introduced by Sergei Natanovich Bernstein to facilitate a constructive proof of the Weierstrass approximation theorem, the leisurely convergence rate of Bernstein polynomial approximations to continuous functions caused them to languish in obscurity, pending the advent of digital computers. With the desire to exploit the power of computers for geometric design applications, however, the Bernstein form began to enjoy widespread use as a versatile means of intuitively constructing and manipulating geometric shapes, spurring further development of basic theory, simple and efficient recursive algorithms, recognition of its excellent numerical stability properties, and an increasing diversification of its repertoire of applications. This survey provides a brief historical perspective on the evolution of the Bernstein polynomial basis, and a synopsis of the current state of associated algorithms and applications.

[1]  Alexander E. Bogdanovich,et al.  Three-dimensional variational theory of laminated composite plates and its implementation with Bernstein basis functions , 2000 .

[2]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[3]  Y. Simsek Functional equations from generating functions: a novel approach to deriving identities for the Bernstein basis functions , 2011, 1111.4880.

[4]  Ron Goldman,et al.  q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves , 2012, J. Approx. Theory.

[5]  Joab R. Winkler A companion matrix resultant for Bernstein polynomials , 2003 .

[6]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[7]  L. Dworsky An Introduction to Probability , 2008 .

[8]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[9]  Robert C. Kirby,et al.  Fast simplicial finite element algorithms using Bernstein polynomials , 2011, Numerische Mathematik.

[10]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[11]  Paul de Faget de Casteljau POLoynomials, POLar Forms, and InterPOLation , 1992 .

[12]  T. Büyükköroglu,et al.  On different types of stability of linear polytopic systems , 2010 .

[13]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[14]  Ron Goldman,et al.  Markov chains and computer-aided geometric design: part I - problems and constraints , 1984, TOGS.

[15]  John P. Boyd Exploiting parity in converting to and from Bernstein polynomials and orthogonal polynomials , 2008, Appl. Math. Comput..

[16]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[17]  G. Tolstov Fourier Series , 1962 .

[18]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[19]  W. Gautschi Questions of Numerical Condition Related to Polynomials , 1978 .

[20]  W. Gautschi On the condition of algebraic equations , 1973 .

[21]  J. Sánchez-Reyes,et al.  Complex rational Bézier curves , 2009, Comput. Aided Geom. Des..

[22]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[23]  A. Rababah Transformation of Chebyshev–Bernstein Polynomial Basis , 2003 .

[24]  Allan Pinkus,et al.  Weierstrass and Approximation Theory , 2000 .

[25]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[26]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[27]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[28]  Mark Ainsworth,et al.  Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..

[29]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[30]  A. Robin Forrest,et al.  Interactive interpolation and approximation by Bézier polynomials , 1990, Comput. Aided Des..

[31]  Joe D. Warren Creating multisided rational Bézier surfaces using base points , 1992, TOGS.

[32]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..

[33]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[34]  Pierre Bezier,et al.  The Mathematical Basis of the Unisurf CAD System , 1986 .

[35]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[36]  Jürgen Garloff,et al.  Robust Schur Stability of Polynomials with Polynomial Parameter Dependency , 1999, Multidimens. Syst. Signal Process..

[37]  J. Garloff,et al.  Lower bound functions for polynomials , 2003 .

[38]  P. Bézier Numerical control : mathematics and applications , 1972 .

[39]  Michael A. Lachance,et al.  Chebyshev economization for parametric surfaces , 1988, Comput. Aided Geom. Des..

[40]  Dario Bini,et al.  Bernstein-Bezoutian matrices , 2004, Theor. Comput. Sci..

[41]  Mario Milanese,et al.  Robust Analysis and Design of Control Systems Using Interval Arithmetic , 1997, Autom..

[42]  A. E. Bogdanovich,et al.  Three-Dimensional Variational Analysis of Composite Structures Using Bernstein Polynomial Approximations. Report 2 , 2001 .

[43]  J. Winkler A resultant matrix for scaled Bernstein polynomials , 2000 .

[44]  Karl-Georg Steffens The history of approximation theory , 2005 .

[45]  Jörg Peters,et al.  Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients , 1999, Comput. Aided Geom. Des..

[46]  Thomas Hermann On the stability of polynomial transformations between Taylor, Bernstein and Hermite forms , 2005, Numerical Algorithms.

[47]  D. D. Stancu Approximation of functions by means of a new generalized Bernstein operator , 1983 .

[48]  Geng-Zhe Chang Bernstein Polynomials Via the Shifting Operator , 1984 .

[49]  H. Rabitz,et al.  Proper construction of ab initio global potential surfaces with accurate long-range interactions , 2000 .

[50]  Matthias Eck,et al.  Least squares degree reduction of Bézier curves , 1995, Comput. Aided Des..

[51]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[52]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[53]  W. J. Gordon,et al.  Bernstein-Bézier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces , 1974, JACM.

[54]  Jean Braun,et al.  A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.

[55]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[56]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[57]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[58]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[59]  Douglas N. Arnold,et al.  Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.

[60]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[61]  G. Alexits Approximation theory , 1983 .

[62]  Joab R. Winkler,et al.  Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis , 2005, Numer. Linear Algebra Appl..

[63]  Adrian Bowyer,et al.  Robust arithmetic for multivariate Bernstein-form polynomials , 2000, Comput. Aided Des..

[64]  J. A. Gregory The Mathematics of Surfaces. , 1987 .

[65]  Joab R. Winkler,et al.  The transformation of the companion matrix resultant between the power and Bernstein polynomial bases , 2004 .

[66]  John A. Gregory,et al.  A pentagonal surface patch for computer aided geometric design , 1984, Comput. Aided Geom. Des..

[67]  Ron Goldman,et al.  Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..

[68]  Yilmaz Simsek Construction a new generating function of Bernstein type polynomials , 2011, Appl. Math. Comput..

[69]  Juan Manuel Peña,et al.  Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..

[70]  Taishin Nomura,et al.  Complex Bézier curves and the geometry of polygons , 2010, Comput. Aided Geom. Des..

[71]  Rida T. Farouki,et al.  Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form , 2001, TOMS.

[72]  C. Caldwell Mathematics of Computation , 1999 .

[73]  Gautam Dasgupta,et al.  Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .

[74]  A. J. Worsey,et al.  Degree reduction of Be´zier curves , 1988 .

[75]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[76]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[77]  Joab R. Winkler A unified approach to resultant matrices for Bernstein basis polynomials , 2008, Comput. Aided Geom. Des..

[78]  George M. Phillips,et al.  A survey of results on the q-Bernstein polynomials , 2010 .

[79]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[80]  Shashwati Ray,et al.  An efficient algorithm for range computation of polynomials using the Bernstein form , 2009, J. Glob. Optim..

[81]  Handan Akyar,et al.  On Stability of Parametrized Families of Polynomials and Matrices , 2010 .

[82]  Saed Samadi,et al.  Explicit formula for improved filter sharpening polynomial , 2000, IEEE Trans. Signal Process..

[83]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[84]  Gerald E. Farin,et al.  The octant of a sphere as a non-degenerate triangular Bézier patch , 1987, Comput. Aided Geom. Des..

[85]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[86]  George K. Knopf,et al.  Surface reconstruction using neural network mapping of range-sensor images to object space , 2002, J. Electronic Imaging.

[87]  Tony DeRose,et al.  Composing Bézier simplexes , 1988, TOGS.

[88]  Oved Shisha,et al.  The Bernstein form of a polynomial , 1966 .

[89]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[90]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[91]  Matthias Eck,et al.  Degree reduction of Bézier curves , 1993, Comput. Aided Geom. Des..

[92]  Christopher M. Pastore,et al.  A comparison of various 3-D approaches for the analysis of laminated composite structures , 1995 .

[93]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[94]  Carl de Boor,et al.  Cutting corners always works , 1987, Comput. Aided Geom. Des..

[95]  Ana Marco,et al.  A fast and accurate algorithm for solving Bernstein–Vandermonde linear systems , 2007 .

[96]  Melvin R. Spencer Polynomial real root finding in Bernstein form , 1994 .

[97]  Marie-Laurence Mazure,et al.  Blossoms and Optimal Bases , 2004, Adv. Comput. Math..

[98]  Alexander E. Bogdanovich,et al.  Progressive Failure Analysis of Adhesive Bonded Joints with Laminated Composite Adherends , 1999 .

[99]  Manfred Minimair Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis , 2007, ASCM.

[100]  M. Powell,et al.  Approximation theory and methods , 1984 .

[101]  Larry L. Schumaker,et al.  Computing bivariate splines in scattered data fitting and the finite-element method , 2008, Numerical Algorithms.

[102]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[103]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[104]  Andrew Paul Smith,et al.  Fast construction of constant bound functions for sparse polynomials , 2009, J. Glob. Optim..

[105]  P. Bézier MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .

[106]  Giuseppe Fedele,et al.  Gauss-Lobatto to Bernstein polynomials transformation , 2008 .

[107]  Yilmaz Simsek Generating functions for the Bernstein polynomials: A unified approach to deriving identities for the Bernstein basis functions , 2010 .

[108]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[109]  M. Zettler,et al.  Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion , 1998, IEEE Trans. Autom. Control..

[110]  Ron Goldman,et al.  Division algorithms for Bernstein polynomials , 2008, Comput. Aided Geom. Des..

[111]  Rida T. Farouki,et al.  High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath contour error , 2012 .

[112]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[113]  Wolfgang Böhm,et al.  On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..

[114]  J M Pe˜na B-splines and Optimal Stability , 1997 .

[115]  Rida T. Farouki,et al.  Curves and surfaces in geometrical optics , 1992 .

[116]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[117]  J. H. Wilkinson The evaluation of the zeros of ill-conditioned polynomials. Part II , 1959, Numerische Mathematik.

[118]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[119]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[120]  Dusan M. Stipanovic,et al.  Robust D-stability via positivity , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[121]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[122]  Ron Goldman,et al.  h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves , 2011, Comput. Aided Geom. Des..

[123]  Elaine COHEN,et al.  Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..

[124]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[125]  Rida T. Farouki,et al.  Physical constraints on feedrates, feed accelerations along curved tool paths , 2000, Comput. Aided Geom. Des..

[126]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[127]  Xia Hong,et al.  Generalized neurofuzzy network modeling algorithms using Bezier-Bernstein polynomial functions and additive decomposition , 2000, IEEE Trans. Neural Networks Learn. Syst..

[128]  Wolfgang Böhm,et al.  Über die Konstruktion von B-Spline-Kurven , 1977, Computing.

[129]  Juan Manuel Peña,et al.  Optimal Conditioning of Bernstein Collocation Matrices , 2009, SIAM J. Matrix Anal. Appl..

[130]  Thomas W. Sederberg Planar piecewise algebraic curves , 1984, Comput. Aided Geom. Des..

[131]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[132]  Bolesław Szafnicki,et al.  A unified approach for degree reduction of polynomials in the Bernstein basis part I: real polynomials , 2002 .

[133]  C. D. Boor,et al.  B-Splines without Divided Differences. , 1985 .

[134]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[135]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[136]  Gerald E. Farin Curvature continuity and offsets for piecewise conics , 1989, TOGS.

[137]  Ron Goldman,et al.  Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling , 2002, Morgan Kaufmann series in computer graphics and geometric modeling.

[138]  Wolfgang Böhm,et al.  On de Boor-like algorithms and blossoming , 1988, Comput. Aided Geom. Des..

[139]  Elisabeth Anna Malsch,et al.  Shape functions for polygonal domains with interior nodes , 2004 .

[140]  Robert C. Kirby,et al.  Fast simplicial quadrature-based finite element operators using Bernstein polynomials , 2012, Numerische Mathematik.

[141]  Rida T. Farouki,et al.  On the numerical condition of Bernstein-Bézier subdivision processes , 1990 .

[142]  Christopher Dyken,et al.  Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..

[143]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[144]  Hans-Peter Seidel,et al.  A new multiaffine approach to B-splines , 1989, Comput. Aided Geom. Des..

[145]  Abedallah Rababah,et al.  Jacobi-Bernstein Basis Transformation , 2004 .

[146]  Wolfgang Dahmen,et al.  Subdivision algorithms converge quadratically , 1986 .

[147]  Gian-Carlo Rota,et al.  Linear Operators and Approximation Theory. , 1965 .

[148]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[149]  Christophe Rabut,et al.  On Pierre Bézier's life and motivations , 2002, Comput. Aided Des..

[150]  Ron Goldman,et al.  Polya’s Urn Model and Computer Aided Geometric Design , 1985 .

[151]  Pierre Goetgheluck On prime divisors of binomial coefficients , 1988 .

[152]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[153]  G. Farin Algorithms for rational Bézier curves , 1983 .

[154]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[155]  Rimvydas Krasauskas,et al.  Toric Surface Patches , 2002, Adv. Comput. Math..

[156]  C. Micchelli,et al.  Uniform refinement of curves , 1989 .

[157]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[158]  M. Lewin On nonnegative matrices , 1971 .

[159]  Fumihiko Kimura,et al.  Non-four-sided patch expressions with control points , 1984, Comput. Aided Geom. Des..

[160]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[161]  Dominique Michel,et al.  A two-steps algorithm for approximating real roots of a polynomial in Bernstein basis , 2008, Math. Comput. Simul..

[162]  B. Moran,et al.  C1natural neighbor interpolant for partial differential equations , 1999 .

[163]  Yongming Li,et al.  Basis conversion among Bézier, Tchebyshev and Legendre , 1998, Comput. Aided Geom. Des..

[164]  Paul L. Butzer,et al.  Functional Analysis and Approximation , 1981 .

[165]  Jörg Peters,et al.  Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..

[166]  Tao Ju,et al.  A unified, integral construction for coordinates over closed curves , 2007, Comput. Aided Geom. Des..

[167]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[168]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[169]  Eberhard L. Stark,et al.  Bernstein — Polynome, 1912–1955 , 1981 .

[170]  Guido Brunnett,et al.  The geometry of optimal degree reduction of Bézier curves , 1996, Comput. Aided Geom. Des..

[171]  James F. Epperson On the Runge example , 1987 .

[172]  P. Revesz Interpolation and Approximation , 2010 .

[173]  W. Burnside,et al.  Theory of equations , 1886 .

[174]  Michael G. Crowe,et al.  A History of Vector Analysis , 1969 .

[175]  Heinrich Müller,et al.  Solving Algebraic Systems in Bernstein-Bézier Representation , 1991, Workshop on Computational Geometry.

[176]  Jürgen Garloff,et al.  Investigation of a subdivision based algorithm for solving systems of polynomial equations , 2001 .

[177]  Michael S. Floater,et al.  On the convergence of derivatives of Bernstein approximation , 2005, J. Approx. Theory.

[178]  T. J. Rivlin Bounds on a polynomial , 1970 .

[179]  Marc Daniel,et al.  The numerical problem of using Bézier curves and surfaces in the power basis , 1989, Comput. Aided Geom. Des..

[180]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[181]  Leif Kobbelt,et al.  Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..

[182]  G. Stewart Introduction to matrix computations , 1973 .

[183]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[184]  Paul de Faget de Casteljau De Casteljau's autobiography: My time at Citroën , 1999, Comput. Aided Geom. Des..

[185]  Sebti Foufou,et al.  Polytope-based computation of polynomial ranges , 2010, SAC '10.

[186]  P. E. Bezier,et al.  Example of an existing system in the motor industry: the Unisurf system , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[187]  Rida T. Farouki,et al.  Legendre-Bernstein basis transformations , 2000 .

[188]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[189]  Rida T. Farouki,et al.  Computing with barycentric polynomials , 1991 .

[190]  G. Chang,et al.  Mathematical foundations of Bézier's technique , 1981 .

[191]  J. Rice A Theory of Condition , 1966 .

[192]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[193]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[194]  Eugene L. Wachspress,et al.  Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..

[195]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[196]  John Lin,et al.  Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.

[197]  Faget de Casteljau,et al.  Shape mathematics and CAD , 1986 .

[198]  Ron Goldman,et al.  Markov chains and computer aided geometric design: Part II—examples and subdivision matrices , 1985, TOGS.

[199]  Karl-Georg Steffens The history of approximation theory : from Euler to Bernstein , 2006 .

[200]  Les A. Piegl,et al.  Fundamental developments of computer-aided geometric modeling , 1993 .

[201]  Paluri S. V. Nataraj,et al.  Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm , 2011, J. Glob. Optim..

[202]  Jürgen Garloff,et al.  Application of Bernstein Expansion to the Solution of Control Problems , 2000, Reliab. Comput..

[203]  Ana Marco,et al.  Polynomial least squares fitting in the Bernstein basis , 2008, 0806.2797.

[204]  T. Goodman Shape preserving representations , 1989 .

[205]  Juan Manuel Peña,et al.  On the optimal stability of bases of univariate functions , 2002, Numerische Mathematik.

[206]  D. D. iljak,et al.  Technical Communique: Robust D-stability via positivity , 1999 .

[207]  Rida T. Farouki,et al.  On the stability of transformations between power and Bernstein polynomial forms , 1991, Comput. Aided Geom. Des..

[208]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[209]  P. Goetgheluck Computing binomial coefficients , 1987 .

[210]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[211]  Ahmed Zidna,et al.  Recursive de Casteljau bisection and rounding errors , 2004, Comput. Aided Geom. Des..

[212]  Abedallah Rababah,et al.  The weighted dual functionals for the univariate Bernstein basis , 2007, Appl. Math. Comput..