Dual Response to Light and Heat of a Metal–Organic Rotaxane Network Featuring Flexible Viologen‐Derived Structs

[1]  J. F. Stoddart,et al.  Controlling dynamics in extended molecular frameworks , 2022, Nature Reviews Chemistry.

[2]  L. Mei,et al.  Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization , 2022, Nature communications.

[3]  Y. Liang,et al.  Hierarchical assembly of uranyl metallacycles involving macrocyclic hosts , 2022, Chinese Chemical Letters.

[4]  L. Mei,et al.  Temperature-triggered Structural Dynamics of Non-coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework. , 2021, Chemistry.

[5]  B. H. Wilson,et al.  Precise Spatial Arrangement and Interaction between Two Different Mobile Components in a Metal-Organic Framework , 2020, Chem.

[6]  B. H. Wilson,et al.  Integrating the Mechanical Bond into Metal-Organic Frameworks , 2020 .

[7]  L. Mei,et al.  Molecular spring-like triple-helix coordination polymers as dual stress and thermally responsive crystalline metal-organic materials. , 2020, Angewandte Chemie.

[8]  M. Baroncini,et al.  Photo- and Redox-Driven Artificial Molecular Motors. , 2020, Chemical reviews.

[9]  Paolo Samori,et al.  Molecular springs: integration of complex dynamic architectures into functional devices. , 2020, Angewandte Chemie.

[10]  Yong Chen,et al.  Cucurbit[8]uril-Mediated Polypseudorotaxane for Enhanced Lanthanide Luminescence Behavior in Water. , 2019, Organic letters.

[11]  M. Masařík,et al.  Locked and Loaded: Ruthenium(II)-Capped Cucurbit[n]uril-Based Rotaxanes with Antimetastatic Properties. , 2019, Inorganic chemistry.

[12]  Xian‐Ming Zhang,et al.  X-ray and UV Dual Photochromism, Thermochromism, Electronchromism and Amine-Selective Chemochromism in an Anderson-like Zn7 Cluster Based 7-Fold Interpenetrated Framework. , 2019, Journal of the American Chemical Society.

[13]  J. Lan,et al.  Anion-adaptive crystalline cationic material for 99TcO4− trapping , 2019, Nature communications.

[14]  Li-Jun Chen,et al.  Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. , 2018, Accounts of chemical research.

[15]  Yuji Suzaki,et al.  Reversible Laser-Induced Bending of Pseudorotaxane Crystals. , 2018, Journal of the American Chemical Society.

[16]  Xiao‐dong Yang,et al.  Flexible Viologen-Based Porous Framework Showing X-ray Induced Photochromism with Single-Crystal-to-Single-Crystal Transformation. , 2017, Angewandte Chemie.

[17]  Z. Chai,et al.  Supramolecular Host-Guest Inclusion for Distinguishing Cucurbit[7]uril-Based Pseudorotaxanes from Small-Molecule Ligands in Coordination Assembly with a Uranyl Center. , 2017, Chemistry.

[18]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[19]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[20]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[21]  Yuji Suzaki,et al.  Rapid and reversible photoinduced switching of a rotaxane crystal , 2016, Nature Communications.

[22]  Hui Wang,et al.  Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production , 2016, Nature Communications.

[23]  E. Yashima,et al.  Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates. , 2016, Journal of the American Chemical Society.

[24]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[25]  Peyman Z. Moghadam,et al.  Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework , 2015, Proceedings of the National Academy of Sciences.

[26]  Kristopher J Harris,et al.  Mechanically Interlocked Linkers inside Metal-Organic Frameworks: Effect of Ring Size on Rotational Dynamics. , 2015, Journal of the American Chemical Society.

[27]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[28]  Feihe Huang,et al.  Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. , 2015, Chemical reviews.

[29]  Xi-Yan Dong,et al.  Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality: Photochromism, Photomodulated Fluorescence, and Luminescent pH Sensing , 2015 .

[30]  Aamod V. Desai,et al.  Stimulus-responsive metal-organic frameworks. , 2014, Chemistry, an Asian journal.

[31]  K. Zhu,et al.  Metal-organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. , 2014, Journal of the American Chemical Society.

[32]  T. Sassa,et al.  Thermally-induced phase transition of pseudorotaxane crystals: changes in conformation and interaction of the molecules and optical properties of the crystals. , 2012, Journal of the American Chemical Society.

[33]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[34]  Zhao-Hui Li,et al.  Reversible luminescence switch in a photochromic metal-organic framework. , 2011, Chemical communications.

[35]  Clare E. Rowland,et al.  Capturing hydrolysis products in the solid state: effects of pH on uranyl squarates under ambient conditions. , 2010, Inorganic chemistry.

[36]  Oren A Scherman,et al.  Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. , 2010, Journal of the American Chemical Society.

[37]  Clare E. Rowland,et al.  Hydrothermal synthesis of uranyl squarates and squarate-oxalates: hydrolysis trends and in situ oxalate formation. , 2010, Inorganic chemistry.

[38]  E. Yashima,et al.  Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. , 2010, Nature chemistry.

[39]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[40]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[41]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[42]  A. Kaifer,et al.  Cucurbit[7]uril: a very effective host for viologens and their cation radicals. , 2002, Organic letters.